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APOLLO NOTE NO. 172 H. Dale/C. Siska

17 February 1964

A PRELIMINARY ANALYSIS OF THE ABILITY

OF THE MSFN TO TRACE THE LEM DURING

THE BOOST PORTION OF THE LUNAR ASCENT

The present computer program, described in Apollo Note No.164,

is not capable of handling thrusting trajectories. However, a continuous

thrust trajectory may be approximated by a series of short coasting

segments, the endpoints of which have been properly adjusted. By this

technique it is possible to estimate the covariance matrix as a function

of time up to and including burnout.

This note considers the case of three doppler range stations

tracking the ascending LEM. The LEM is assumed to be following a

thrust magnitude and body angular rate program. The computing center

on Earth is assumed to be receiving the LEM's body-measured longi-

tudinal acceleration and body rates through a data link. What the

Earth does not know are the errors in the LEM's initial attitude and

the error in the longitudinal accelerometer. As the Earth-based com-

puting center increases its knowledge of the actual ascent, it is as-

sumed to be able to update the LEM's program of body rates and cut-

off time. In this preliminary analysis, the tracking stations are as-

sumed to measure range (o'R= 0. 5 meters for 1 second samples) with

a bias which is known to within 10 meters. The initial position of the

LEM on the surface of the Moon is assumed to be known to within 1

meter. The one sigma accelerometer error is assumed to be one per

cent of the measured acceleration, and the initial attitude errors are:

sigma pitch = sigma yaw = sigma roll = 2 °.



Detailed Method of Analysis

Table ! contains points on a reference trajectory from lunar

ignition to burnout, x is defined along the local radius and y is the

ground trace. Now it is possible to fit a parabolic trajectory, thrust

free, to the points on the reference trajectory.

Impulsive Velocity Components
Timel ::

(sec.)

0

15

3O

45

6O

75

9O

105

•120

135

.....Altitude

(m.)

x

707.96

1979.07

3668. 52

5615.41

7658.84

9605. 73

11263.00

1242[. 50

12872.00

Range
(m.)

Y

0

1045. 85

4070. 77

9348. 29

17119.80

27594. 40

40965. I0

5742 5.20

77151.60

Necessary to Match Ref. Traj.
with Coasting Segments (m/sec.)

_:'1 Yi

59. 36

96.90

124. 79

141.95

148. 39

141.95

122.65

89. 39

69.72

20 66

351. 83

518. I0

6982 30

891. 38

1097. 33

1315.08

1545.70

100377.00

42.20

Table 1

A Reference Trajectory

Thus

Y(tk+ 1) - Y{tk)

tk + 1 - tk

xi{tk}
• X(tk+ 1) " X{tk)

I
÷ g

tk + I - tk

Z

Z



describe the incremental velocity components at Xk, Yk' and tk which

will allow the LEM to coast under the influence of lunar gravity to

xk+ I' Yk+ 1 in time t k+ 1" These numbers are also shown in Table 1.

Now it is necessary to develop the information matrix for

the first segment of the thrusting portion of the ascent.

conditions for the three stations are as follows:

Madrid Station

A1

A4

A5

GAM ID

BETA

The input

= . 17525 x 104m

02m= .59359 x i /s

= .697229 x 102m/s

=1.0

= . 18308 x 10 Z deg.

Xl

ETA

ZETA

LA MBA

A LPHA

OMEGA E =
°

OMEGA M =
°

RHO E =
°

RHO M

MU

BIG L

SN£A L

SD IND = 0

S IND = 1

PS 1 =0

= . 180 x l0 3 deg.

= . 180 x 103 deg.

= .402 x 10 2 deg.

=-. 370 x 101 deg.

729116 x 10 .4 rad/sec

4236 x 10 -6 rad/sec

63781 x 107 m.

= . 385 x 109

= .4896 x I013 m3/sec 2

= .40 x lol deg.

= .60 x 102 deg.

PS2 = 0

initial orbit radius

initial radial velocity

initial tangential velocity

inclination of Earth-Moon Orbit

to Equator

Euler angles relating x' y' z'
h ,% A

coordinates to x y z

coordinates (see Note No. 82)

station latitude

station longitude

earth angular rate

earth-moon angular rate

radius of earth

earth-moon distance

gravitational constant

initial latitude of sub-lunar point

initial longitude of sub-lunar point

PVW IND =



TJ = . Z5 rain.

QIND = 1

Q F - --

-TI (_nltial) = .016666 rnin.

TI (interval) = . 016666 rnin.

Ascension Station

same except:
1

LAR4BA = - .79 x I0 deg.

ALPHA = - . 143 x 102 deg.

maximum time of observation

time of first observation

interval between observation

Carnarvon Station

same except:

LAMBA = - . 2487 x 10 2 deg.

ALPI-IA = . 1137 x 103 deg.

The above three sets of input conditions are processed us-

ing range as a measurable (o-i_ = 0. 5 meters) with the assumption

that a bias exists in the measurement.

In addition to the information derived by the above three radars,

there exists some a priori information regarding the orbital segment.

It is assumed that the initial position is known to about one meter in

each of three orthogonal directions. The velocity components are

assumed to be quite well known('Vl0 "j m/s not including platform or

accelerometer errors). The range measurement biases are assumed

to be known to within I0 meters for each station. Thus an a priori

information matrix may be generated, the diagonal terms of which

are the reciprocals of the squares of the assumed mean deviations.

The off-diagonal terms are zero.

4



%

X

Y

X

R 1

R 2

R 3

x y z _ _, _. R 1 R 2 R 3

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1000 0 0 0 0 0

0 0 0 0 I000 0 0 0 0

0 0 0 0 0 1000 0 0 0

0 0 0 0 0 0 .01 0 0

0 0 0 0 0 0 0 .01 0

0 0 0 0 0 0 0 0 .01

)

In the computer program the above information is combined

with the tracking information to yield a total information matrix.

By inverting this and through the use of a 3acobian transformation,

the covariance matrix at the end of the orbital segment is obtained.

Up to this point no allowance has been made for unknown errors

due to the initial errors in the LEM attitude and due to an unknown

error in the longitudinal accelerometer. Thus the covariance

matrix mentioned above is not yet complete.

Assume a fixed reference system with x, y, and z defined

as altitude, surface range, and out-of-plane coordinate respectively.

The initial errors in the LEM attitude rotate this frame by Crx,

_ry, and _ z successively giving the body coordinates x, y, and z.

The programmed thrust vector will have components T x, Ty, and

_" (which is defined as zero). Thus in the fixed inertial frame
z

the thrust components to first orders are:

T = _r" ÷ a "T-
x x z y

= T - ,_ "T (i)
Ty y z x

= "T +_ TTz =x y y x
5
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Assuming a constant g field, the inertial accelerations are:

T
x

m

T

y = MY {z)
rXl

T

z -- u

m

If the LEMis correctly aligned to the inertial frame (_x = _y = _z

then the programmed thrust will generate the desired ascent trajectory.

Thus at any time, t k

t k

x t - _ dt - g t k
k

t k N

SoT-" = _ dt {3)
Ytk m

= 0),

M

ztk
= 0

Defining the velocity component errors as A_ =

etc. for each time, tk, results in

t k

/
_dt - _tk ,

0

A_ =
z Ytk

Zk_r = -_z + gtk+ I
(4)

A_. = =X ytk.+ _

7...... --



and
Now if =x' _y' z

variables with variances _ ,
X

are constant with time but are random

Z 2

_y ' az ' then the variances of the

velocity errors are:

.z ---2- :z

o-x = _z Ytk

-(xtk )2 --" 2

_z + g tk (5)

2  (xtk )2o- z = a x Ytk + ay + g tk

However, this does not include errors in the accelerometer.

Since the accelerometer is aligned with the longitudinal or thrust

axis, any error in the acceleromcter will add a first order error to

the horizontal in-plane and vertical components of velocity. Assum-

ing that the accelerometer error is some constant fractional part

of theactual acceleration, then equation (5) may be rewritten as:

•2 --_ "--2 e2 { -" ) 2
O'x = _z Ytk ÷ xt k + g tk

tk + gt k + e Ytk
(6)

o'z = _x Yt k + ay tk + g

7



where e is the fractional expected random error in the accelero-

meter (e = .01 for the numerical cases studied herein}.

In a similar fashion equations for the variance of position

may be written: -

2 _ 2 e2 [-- g tk21+ + --
o" x = _z Yt k xt k z

2

2 :)2 ,._,. (7)

o'z = _t + + g t
x Yt k z

2

Equations (6) and (7) express the variances in position and

velocity for an ascent which is never corrected or updated during the

thrusting period. Thus in order to find the additional uncertainty

which shouldbe added to the previously derived covariance matrix

between times tk and t k + 1' differences in the above equations must

be taken as a function of time:

2 2 2
_crx = o-x (tk+ i) - Gx (tk)

z z z%_y = _y (tk+ 1) - _y ( ) (s)

.2 .2
= Cz (tk+ 1) - o-z (tk)



These numbers may be used to generate an a priori matrix which

expresses the additional uncertainties in the desired parameters

caused by platform rnisalignment.

A0"X 2 0 0 0 0

2
0 Ao-y 0 0 0

0 0 A o-z2 0 0

0 0 0 _ o-/c z 0

.2
0 0 0 0 Z_cry

0 0 0 0 0

0

0

0

0

0

cr_ z

When the above covariance matrix is added to the previously

derived covariance matrix (which used tracking and old a priori data),

a new and total estimate of the expected errors is obtained at the

end of the boost increment (In this example it is the first boost in

crement )

Now by inverting this total covariance matrix a new informa

tion matrix is obtained which is used as a priori information at the

start of the next boost segment. This process is continued until

•ascent engine burnout.

Numerical Results

First of all, the numerical results will be presented for the

case of no tracking This is a check or worst case which may be

used to show what improvement can be made through the use of

9



% MSFN tracking. As pointed out previously, with no tracking the

uncertainty in position and velocity is given by equations (6) and (7)

above• Figure 1 presents the uncertainty in positional elements as

a function of time (measured from lift-off)for an assumed a priori

knowledge of initial alignment (2° about each axis: pitch, yaw, and

roll; with a I% longitudinal accelerometer). Figure 2 presents cor-

responding velocity uncertainties. Also included in Figure 2 is the

RIVIS error in total velocity which is simply

V &Z 2 .2'crV = a +a# +crz

In the computer program used for the enclosed example

calculation, the burning period was split into nine steps• The com-

puter print-out can thus be tabulated at the end of each of the nine

segments.

t (sec.)

Table Z

Example Output of Computer Program
Velocity Variances vs. Time

Computer Output Before Adding A Priori Errors (m/sec.)2

.2 .2 .2 V 2ax _y az o-V
(m/sec)

0

15

30

45

60

75

90

105

120

135

0

•249 x I0

•396 x I0

•463 x I0

• 577 x I0

•806 x I0

• 123 x I0

• 199 x I0 "z

•373 x 10 -2

• 518 x 10 -2

-3
•999

-3
• 144

-3
• 179

"3
,185

-3
• 188

-2
• 189

• 189

• 190

• 190

0

-3
xl0

I
xl0

I
xl0

I
xl0

x 101

I
xl0

x 101

x I01

x I01

0
-2

• I00 x I0

•612 x I01

•913 x 101

•978 x 101

• I00 x I0 _

• I02 x I02

• I02 x I0 z

• 103 x I02

• 103 x 102

0
-Z

•225 x i0

.756 x 101

• 109 x 102

• 116 x 102

• 119 x I02

• 121 x 102

• 121 x 102

• 122 x 102

• 122 x lO 2

0

0.0

2.8

3.3

3.4

3.4

3.5

3.5

3.5

3.5

I0



0

(Table 2 continued)

A Priori Additional Errors to be Added After Each

Segment (m/sec) 2 (See Equation 8)

2
t(sec) Aa ,_z _,_z F..Aa_-ZEAa;.z o-v 2

0

0

15

30

45

6O

75

90

105

120

135

0

23. 1

78.6

144• 3

238.

336•

449.

6Z2•

780.

957.

o o [ o 0------7 o 'I
10.7 31.2 [ 23'1 I0.7 31.2 65 i

z4•s 98• I lOl. ? 35•2 lZ6• 263 I

31•s 164• I 246• 67. 290. 603 I

j
42. 350. ]8zo. 147. 894. i_01 l48• 486. _z69. _gz. _380. z8_ I
48. 620• ]1891. 240. 1970. 4101 ]

53 7_o. Iz6_ _93 27_ sTo_I
36s . -,66sJ

"v"

-v'-" Plotted in Figure 2

Computer Output Including A Priori Addition (m/sec) z

t(sec) .2 .2 •2 V 2
O'x (_y (;z or crV

(m/sec).

0

15

30

45

60

75

9O

105

120

135

0 _> 0 0 0

•231 x 102 . 107 x 102 .310 x 102 .648 x 102

•787 x 102 .259 x 102 . I01 x 103 .206 x 103

• 144 x 103 ..338 x lO2 . 173 x 103 .351 x 103

•238x lO3 .399 x 102 .264x 103 .542 x lO 3

•336 x lO3 .439 x I02 .360 x 103 .740 x lO 3

•449 x lO 3 .469 x 102 .466 x 103 .962 x 103

..622 x 103 .499 x 102 .630 x 103 . 130 x 104

•780 x 103 . 549 x 102 .780 x 103 ..162 x 104

•957 x 103 .639 x i0z .952 x 103 . 197 x 104

0

8.0

13.4

18.7

23.3

27.2

31.0

36. 1

40.2

44. 4

II



i •3500

] [ [_

1_o

@

3000

2500

2000

ca

0

150O

I000

Initial Platform Errors

= _ = I_Z°z
x y z
I% longit, accelerometer

(out of plane)

o'y
(ground trace)

50O

0 15

Burnout

30 45 60 75 90

Burning Time From Li_-Off(Seconds)

105

Figure I Positional Errors for no Tracking

m-

L__
120 135
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9O

0

80

7O

60

50

40

30

20

Initial Platform Errors

2 2 2 2 ° 2
x y z

l%longit, accelerometer

f

/ (ground track)

,

75 90 105 120 1350 15 30 45 60

Burning Time From Lift-Off(seconds)

Figure 2 Velocity Errors for no Tracking
13



O

O

As it turns out, the time increments chosen (15 sec.) were

too large to yield meaningful answers. This can be seen by looking

at the k terms in Table 2. The total variance after an increment is

almost exactly equal to the errors added during the increment, im-

plying that the initial errors have been completely smoothed out by

the tracking information during that period. However, if this is true,

then somewhere in the mlddle of the increment the errors built up

in this shorter time should start to be acted upon by the tracking data,

reducing greatly the final error at the end of the 15-second segment.

To better explain what is happening, the last segment of the cr _ com-

ponent will be analyzed.

From Table 2 at 120 seconds o'_ 2 is found to be equal to

780 mr/set 2. After 15 seconds of smoothing and without including

•2 m 2 2platform errors, the MSFN is able to reduce crx to .00518 /sec .

From Apollo Note 4, the relationship between a measurable (range)

and the estimated slope (velocity term) of a linear fit is given. Com-

bining this with the initial a priori variance gives a relationship of the

form:

1 1 t 3
= .z !--f-

_x _x

final a priori

; t = 15 seconds (9)

.2 m2/sec 2, 2
where for our case cr Xfina 1 = 780 cr x a priori = " 00518

and k is a constant dependent upon the variance of the measurable and

the geometry, t is time measured from the start of the increment of

tracking (120 sec) or where CrXa priori is given. Solving this equation
2

for k with t equal 15 sec. gives k = 17. 47144 m sec. This allows

equation (9) to be plotted for any tracking time

o- x(t) = 1 (10)
1 t 3

.z ÷
x a priori

This is shown in Figure 3.

14
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30

25

20

15

o'_ (mlsec)

-e---- a_ = 27.9 m/sec.
initial

or a priori

/

A_= 30.9 for
the 15 sec. incre-

ment between /

120 and 135_c.

ACr_ 2 = cr_2(t) - ¢r_'(t = 1

t measured from zero

= equation (5)

10

5 /

,/
3

2

1

0
0

120

/
Total c;.qY_ascd Upon 1 Second

= 8. 0 m/sec.

Iterations

1 Z 3 4 5 6 7 8 9
125

Time in Seconds (Measured from 120 sec. and zero)

10
130

11 12 !3 14 15
135

Figure 3

Effect on cr_ Estimate of Using
One Second Iteration

15
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Also plotted in Figure 3 is the additive error due to the

2 ° platform, AcT _. Now _l_e total error at the end of an increment

{15 seconds in the example computed case) is simply equal to the

square root of the sum of cr_(t)2 from equation (I0) and Ao-_2 from

equation {5) or as shown on the figure. This is true for incremental

times other than 15 seconds. In particular it has been done for

l-second increments and is shown on the figure. The resulting error

in cr_ of 8 m/see, is closer to reality than the 30.9 m/see, given

by the computer. In _ and _., the relative improvement through the

use of shorter increments is not quite as great since the k of equation (9)

is much larger. This follows from geometrical reasoning: _ is es-

sentially along the radar measurable and thus a good handle on x and

is quickly obtained; but _ and _.are perpendicular to the Earth-Moon

line and thus longer measurenqents are required to improve a priori

estimates of _ and _..

Thus reasonable estimates of the actual uncertainty in _ and _,

at the end ofthelast increments, are 16 and 4 meters per second

respectively. The computed output was 31 and 8 meters per second

for these two quantities.

Figure 4 presents thc computer print-out of the estimated

total velocity error as function of time for the ascending LEM.

Vcr .2 .2crV = _2 + cry + ¢rz

Also shown is a more reasonable estimate of the actual ability of

three radar stations based upon the above reasoning. It should be

remembered that this is a preliminary effort and not an exact state-

ment of the utility of the MSFN during lunar ascent.

A refinement, which has not been encorporated in this analysis,

can further improve the estimates shown in Figure 4. This refinement

consists of assuming some knowledge of the actual platform allgnment

as the hdSFN builds confidence in the computed velocity. For example,

16
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9O

8O

3O

20

10

I

PRELIMINARY ESTIMATE OF THE
UTILITY OF MSFN DURING POWERED

LUNAR ASCENT

I
3 Radars in _ Range Mode . j

o R = 0.5 Meters at I Second
Initial Platform Errors: /pitch)2 = --= (oryaw) 2 (c_roll)z = (2°)z

I% scale factor error in the

longitudinal accelerom ete r

/

0/

Programmed Boost /

with no MSFN .... _._ /
Updatxng

, .. / I _'C"-'°'_.".c,"o._-. , I

/ " I
, / _,./:.,,,_"_ _ .... I
//, _°I __. _---'----I------

/," ' I _._-:- " I

lower limiting guardband
! ! n

_'"---(output before adding each error increment)
!

0

87.5 m/s

Burnout

44.4 mls
/

l
l

/18. 3 m/sec

RMS Velocity

\ Error if 15 Sec.
of Smoothing

k_ Exist AfterBurnout
/

%@

3. 5 m/s

15 30 45 60 75 90 105 120 135

time (seconds)

Figure 4

#
Velocity Uncertainty with Tracking

17
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O
assume that the MSFN computes at close to real time. Then from

Figure 4 at 45 seconds, the total uncertainty in the velocity is

about 12 meters per second. This is a factor of two better than

the error which would exist for a 2° platform error. Thus the

IVISFN could make a second guess at the platform alignment and thus

decrease the additional uncertainty occurring after 45 seconds.

18
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APOLLO NOTE NO. 173 H. Dale/H. Engel
3 March 1964

EARTH ORBIT INJECTION AND TRACKING ERRORS

INCLUDING STA TION LOCA TION UNCERTAINTY

This study was initiated with Apollo Note No. 144 which ana-

lyzed the Apollo Earth Orbit injection from various station combina-

tlo_il_:,,_:,reaso,is make this note necessary. First, it has been

shown that range and range-rate are not really independent, uncor-

related measurables. Second, the computer program has been

modified to include station location errors (see Apollo Note No. 108).

The location of a station, for the purpose of describing station

location errors, is as follows:

X f'

Z Ir

y"

measured perpendicular to the axis of the Earth's
rotation

measured parallel to the axis of rotation

following a right-hand rule

These coordinates differ from those specified by Dr. F.

Vonbun and described inApollo Note No. 144. This is the case

north

pole

Station Reference Used Vonbun' s Reference

(see Apollo Note No. 144)

Oo
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because our previous discussions with JPL have indicated that station

coordinates are known best in the x 'fdirection and known to lesser

but approximately equal accuracies in the y" and z" directions. We

could have found the covariance matrix of the x"y"z" components of

a priori station location by a matrix rotation, but for the purposes of

this note we have simply applied Dr. Vonbun's numbers to the x",

y" and z" axes.

It is of interest that as the tracking time increases not only

d_i_he"_'_df _s__ion location errors decrease, but the actual

knowledge of the station location improves also. This occurs simply

because each station location component is no more than another

parameter of the problem. Thus with one station (3 components of

location) the six-by-six covariance matrix increases to a r_ine-by-nine

equivalent. Similarly, two stations produce twelve-by-twelves, and

three stations produce fifteen-by-fifteen covariance matrices. This

presents a problem if bias errors in the measurables are to be in-

cluded. To keep from exceeding the available program format, biases

were not included in the cases reported in this note. I-lowever, an

estimate of the degradations due to the presence of biases in the range

and angle measurables may be obtained from Apollo Note No. 144.

The results of the comparison with and without station location

errors are presented in Table I. Mere only the RMS position and

velocity uncertainties are shown. As a generality one may conclude

that station location errors do not seriously degrade orbit determina-

tion. As one would expect, the major degradation occurs in position

rather than velocity.

Table Z shows how the station location uncertainties decrease

with tracking.

A short and simple program has been written which will

diagonalize the position or velocity {3 x 3) covariance matrices and

print out the main diagonals and their direction cosines in an appropri-

ate space. This can be explained through the use of the following sketch:

2
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Table I

EFFECT OF STATION LOCATION UNCERTAINTY ON

RMS POSITION AND VELOCITY ERRORS FORVARIOUS RADARS

Stations Radar/Mode

Bermuda UFS/R, 6, 6

No Station With Station
Location Errors Location Errors

RMS RMS
RMS V Position

rn/sec.

3. 33

meters

RMS V Position

m/sec, meters

139• 3.33 167.

Notes

1 o Errors in

alone

Carnarvon

FPS-16/R, 6, 6

UFS/f<,6, 6

FPS-16/I_, 6, 6

UFS/R, 6, 6

.928 36.3

3.03 28.3

7.71 1425.

.071 9.5

.928 99.8

.075 90.6

the measurables

are (for 1 sec. At)
UFS:

o-R = 15m

o-R = . 1 ml_

o- 6 = .8 mil:

FPS- 16:
alone

Bermuda
and
Carnarvon

Bermuda
and

Ship No. 1

Bermuda,

Carnarvon,
and

Guaymas

FPS-16/R, 6, 6

UFS/A, 6, 6

FPS-16/IZ, 6, 6

UFS/R, 6, 6

FPS-16/R, 6, 6

uFs/A, 6. 6

FPS-16/R, 6, 6

UFS/R, 6, 6

FPS-16/R, 60 6

UFS/A, 6, 6

FPS-16/IZ, 6, 6

UFS/R, 6, 6

FPS-16/R, 6, 6

uFs/_, 6, 6

FPS-16/I_, 6, 6

.019

.O58

.255

.035

.011

.039

•045

•O88

.022

•O56

• 180

. oo6o

.0017

.0051

•0053

2.5

8.1

39.4

6.5

1.8

5.3

7.9

23.9

6.4

15.6

3.7

2.42

.78

I. 74

5, 14

.O28

.068

.022

81.9

62.7

43.4

o-R = 6m

o-1_ = 6 m/s
0-6 = .2 n'lil:

A priori sta. loc.
errors are for

each sta. (except
ship):

x" = I0 m.

y" = z"= 65 m.

A priori
Ship No. I

Sta. loc. errors

.037

.012

.036

•025

110.

79.5 i

37.8

18.2

36.7

27.3

I -_J'X" = 20

m•

'z m
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Y

x (up)

\

point just after

tracking of the
last station

initial point on orbit (t = O)

The total covariance matrix is presented as an output of the

old computer program in the x', y', z' system which is defined with

x' along the radial direction at t = 0. z' is normal to the orbit (see

Apollo Note No. 82). If 0 is the central angle traveled between t = 0

and the last point of tracking, then a local coordinate system may be

defined with x up or radially away from the Earth's center and z paral-

lel to the old z'.

Now the 3 x 3 set of covariance components corresponding to

either position or velocity and in the x', y', z' system may be written:

MII

MZ I

M31

Using the above defined angle,

be defined:

MI2 MI3]MZZ MZ3

M32 M33J

8, the following quantities may

• 5



NIl = MII cosZ0 + 2 MI2 sine cosO + M22 sin2O

NI2 N21 = MIZ (cosgO - sinZ8) + (M22 - MII ) sine cosO

NI3 = N31 = MI3 cos 0 - M23 sin{)

N22
• 2 2

MII sln 0 - 2 MI2 sin0 cos O + M22 cos e

. N23....:, ._ ...... :.<_N.3Z = - M13 sine + M23 cosO

N33 = M33

which simply describe the rotation of the matrix about the z' axis by

an angle 0. Now the main diagonals may be found by solving the follow-

ing equation for kl, XZ, and k3:

k 3 + BZX2 + BIX + B ° = 0

where

B 2 - NIl - N22 - N33

= 2
B1 N I IN33 + N33 N22 ÷ N22NII - N2 " N12 - N I3

B
O - N 1 INzzN33 +

2
NIIN2 + Nz2NI3 + N 33N12

- ZNI2N23NI3

Then for each k

PZ =

NilNz3 - NI3NIz - NZ3X

N22NI3 - NIzNz3 - NI3 k

6



.L p ._
3

k - N12P 2 - Nll

NI3

P = + P + P3

Using these three quantities, the direction cosines to the x,

may he defined:

_ g axes

x direction cosine = 1/P

y direction cosine

z direction cosine

= P2/P

= P3/P

for each k

Use of such a computer program allowed the author to sketch

the main diagonals of the covariance matrix for all of the (R, _, _)

cases shown in Table 1. These follow and end this note. The main

diagonals are in meters and meters per second.

7
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 174 H. Engel/L. Lustick

27 February 1964

THE EFFECT OF THE UNCERTAINTY IN NUISANCE

PARAMETERS ON THE ACCURACY OF

ORBIT DETERMINA TIONS

Pur_se; ....... .......

The purpose of this report is to indicate the effect of uncertainties

in the following quantities on the accuracy of orbit determination.

1. Station location errors

2. Errors in velocity of light

3. Errors in the clock

4. Error in the gravitational constant

Introduction

The measurables depend on quantities in addition to the parameters

which determine the orbit. If these quantities are not known exactly, their

inaccuracy is reflected in additional uncertainty in the orbit parameters

desired.

It is the purpose of this report to indicate to what extent these

nuisance parameters result in uncertainty in the desired parameters.

Method

1.

Z.

The results were obtained with the Bissett-Berman error

analysis program for determination of orbit parameters

(see Note No. 8Z).

A typical lunar rendezvous trajectory was used.



%
t

l x Oz2 2÷ o- ÷3. The change in the uncertainty of the rriiss

at rendezvous was used as an indication of the effect of the

nuisance parameter.

Conditions Investigated

I. Lunar rendezvous trajectory (perilune at 8 n. mi. ; apolune

at 80 n. mi.).

:_ :.2.. St__:(2): Madrid; Ascension.

3. Measurable: Range

4. Accuracy of measurable: 0. 6 m (1 o-) at one minute

intervals.

5. Observations times of: 5, I0, 15, 20, 25, 30 rains.

6. Hohman transfer rendezvous.

7. The a priori knowledge of the unknown parameters is listed

below. These values represent approximately the published

uncertainty in the knowledge of the nuisance parameters.

Parameter

Position components of LEM

Velocity components of LEM

Station location components

Velocity of light

Gravitational constant of Moon

Apparent velocity due to clock
rate difference at Stations

(see Note 157)

(lcr) Value of Uncertainty

1 km _ Consistent with Accuracy

3 m/see..f of l. M. U.

25 m (x, y, z)

I part in 107

1 part in 103

1 part in 1012; and i010



Results

Figure 1 compares the knowledge of the miss at rendezvous for

uncertainties in the nuisance parameters with the miss at rendezvous

for perfect knowledge of the nuisance parameters. The effect of the

uncertainty in the velocity of light could not be determined because for

the case considered the uncertainty in velocity of light was apparently

too much like a range bias resulting in an ill-conditioned matrix.

Over the range of errors investigated, only the uncertainty in the gravi-

tational constant and the error in clock rate (at least for 10-10 parts/

part} affected the uncertainty in the miss at rendezvous. The effect

of station location errors was negligible. The clock with 10 "10 parts/

part error was the only variable to have an appreciable effect after 30

minutes of observation. The miss at rendezvous with no errors in the

nuisance parameters was 330 meters and this was increased to 550
-10

meters dueto an error in the clock of 10 parts/part, For errors

in the clock of I0 "IZ parts/part, there was no effect in the uncertainty

in the miss at rendezvous.

The effect of the uncertainty in the gravitational constant, _t,

shown in Figure l, can perhaps best be understood by exarnining

Figure 2, which shows the improvement in the nuisance parameters

as a function of observation time. The improvement in _ is small un-

til after 20 minutes of observation, whereafter a marked improvement

is observed {2 order of magnitude at 30 minutes}. The effect of_ on

the uncertainty in the miss at rendezvous {Figure i) emulates, as to

be expected, the effect shown in Figure 2. The only other parameter

which was improved during the 30 minute observation interval was the

clock rate with an a priori error of 10 "I0 parts/part.

Conclusions

After 30 minutes of observation, the only nuisance parameter

which significantly effects the uncertainty in the miss at rendezvous

is the clock error. Even for pessimistic assumption as to clock ac-

curacy {1 x 10"10 parts/part), the uncertainty in the miss at rendez-

vous is small (550 meters} compared to the allowable rendezvous

window.
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APOLLO NOTE NO. 175 L. Horowitz
March 6, 1964

OPTIMUM GUIDANCE THROUGH LUNAR

DESCENT PHASE

Introduction: Apollo Note 46 describes optimum lunar ascent trajectories

based on minimum fuel considerations. This note provides developments

for lunar descent trajectories, optimizing exchanges between fuel dis-

placed by more accurate on-board guidance systems and fuel economies

afforded thereby.

Formulation: We suppose a flat lunar surface and a constant gravitational

field "g":

¥

Figure i

H I P(Xo , YO; No' YO )"

" " ' X

For a nominal case, we take Yo = 8 n. mi.; Xo = -5000 ft/sec; Yo = 0; and

x o to be determined subject to the requirement that the origin of phase

space (0, 0, 0, 0) be acquired with minimum fuel expenditure. Taking

the rocket engine to be operating at full thrust over the entire descent

trajectory, it is clear that the minimum fuel requirement can be replaced

by the requirement of minimum transfer time. As an approximation, we

take the thrust to mass ratio of the vehicle to be 6g, where g is the lunar

<



t
gravitational constant. Then, letting 0 be the thrust angle (measured

clockwise from the positive Y axis as in Note 46), T the transfer time

and "a" the thrust magnitude, we have

x = a sin 0

= acos0-g

(i)

,_)

subject to the indicated initial and final conditions.

Note 46, we have
• , _ .... ! _ ....... +

¢-

o<tl : tan-,|,c[ t ,ote T- _(T-t)
_o

Then, by (28) of

(z)

%
whore we have "reversed time" by replacing t with T - t.

Csc 0o - coti9o

8T = 0(T), and 3/= csc eT - cot eT "

Rewriting (2) as

O(t) = tan'l( 1 )a+_t '

Here, 0 = 0(0);
o

(3)

we obtain

a+ 13t
COS 0 =

1+ (a + _t) z
(4)

i
sin O =

1+ (a+ _t)z

Then, by (i)

e

Z



O T T

_¢(t) l = af 0 dt
0 3¢/1+ (_ + _t) z

T foT_(t) I = a (_ +_t) at
o 3/1 + (,_ + _t) z

so that

- gT

(5)

• " ..........::; " T " cot 0 - cot 8 (0)
a n_ T o "

From (2),

Ix° 1 (7)

8o = tan'l aT;'ny '
0 T

Now, if we start with _} = 3Tr/2 (to provideso that 0 T is specified by e o. o
1 -2

maximum diminution in initial kinetic energy _ mXo), we have

cot 0 T = OT (8)

with solutions .860, 3.43, 6.44, 9.53, 12.7, 15.8, ... , nw (asympototi-

cally).

Now it is clear on physical grounds that the horizontal component of

thrust will always oppose the horizontal component of velocity {since mini-

mum transfer time is desired). Hence, for Xo negative, the "principal

values" of 0(t) as given by (2) must be

(2n- 1)w __ e(t) __ 2nw; n = 1, 2, ... (9)

But note that if it were actually possible to have n _- 1 for this optimal

trajectory, the horizontal component of velocity would have to reverse



itself, contradicting the assumed optimality. Hence, the principal values

(9) for 8(t) must be taken for n = I :

_< O(t) Z= . (I0)

The required zero of (8) is therefore 0 T = 3.43 rad _ 197 ° . The quantity

_/ is then.281; _ny =-1.27, so that T = 382 sec. for this optimal transfer.

The horizontal range is

x° = - _(t) dt , (II)

where x(t) is given by (5). Effecting this computation,

u=a+_T

x0 • _ x0 -_---_ u sinh" u- (12)

U= _

since x(T) = 0. The numerical value of x is 192 n. mi. for this case.
O

The development (12) is given in Appendix I.

Appendix II provides an analogous development for optimum guidance

with horizontal range specified. The result is

V1 + Clt

O(t) = tan-1 L"C2+ C3t " (13)

We see that C 1 = 0 for the optimum range case.

Error Study I, Single Terminal Correction: Using on-board altimetry as

the guidance and navigation observable, we begin by assuming errors in

estimated position and velocity to be themselves proportional to position

and velocity respectively, and to be of the order of 1%. For simplicity,

we first consider position errors and velocity errors separately, and

take the extreme case of a single terminal correction under which no

correctional measures are taken until the total apparent transfer time T

has elapsed:

4



% I,

zontal coordinate x o, we have

xe(T) = (T-t) sin @(t) dt + x °

Positional Errors: For an initial error ex in the initial hori-
O

T + (i+e) x
O

where x (T) is the horizontal coordinate at t : T corresponding to an

• a_0T "initial error e - x o. But from (1), x(T) = (T-t) sin @ dt + x T + xO O

so that

=0

xe(T) = eXo. (I4)

Now at full thrust (a = 6g), the time required to tra.vel from (x,y; x, y)

= (ex o, 0" 0, 0) to (0, 0" 0, 0) is Tpenalty = _ 2e--_x°, which (for e = .01)' ' 3g
is 38 sec. or about 10% for the extreme case of no correctional measures

until the (apparent) optimal trajectory has been completely negotiated.

2. Velocity Errors: For an initial error e_:
O

zontal component of velocity Xo' wc have
Tf

._" (T) _ = ] a sin @ at + (1 + e) .x"

J0 O '

in the initial hori-

whe (T) is the horizontal component of vc!ocitv at t = T correspondingx • Tre

to an initial error ex o. But from (1) ._(T) = a I sin O dt + x = 0 so
' O

J O
that

xe(T) : ek . (15)O

Integrating again,

xe(T) :

we have

(T-t) sin 8 dt + (I + e) _: T + x
O o

where

_0 z _ =
x(T) = a (T-t) sin0 dt + Xo T + x° 0..

5



% Hence,

x (T) = ek T (16)
e O

for this special case. By symmetry, the optimum thrust program is to

ex° [ex + llgT]apply full thrust in the negative x direction until x - 24g t o

then full thrust in the positive x direction until the origin of phase space

(0, O; O, O) is acquired (see Appendix III). The time penalty for this trans-

fer iS _ [e_<o + _2x2 + 24ge_<o_ as is alsO shOwn in AppendixIII'O
which (for e = .01, T = 382 sec. a fore) is 49 seconds or about 13% for

this _t_er_e case:of:a: single terminal correction on an initial velocity

error of i%. Note that penalties for position errors and penalties for

velocity errors are about the same for this situation.

Error Study II: Marginal Utility of Additional Guidance and Navigation

Units: To a first approximation, doubling the number of on-board guidance

and navigation units should result in reducing the (lo-) error in estimated
1

initial position and velocity by -/_- . Relating fuel displaced by this addi-

tional equipment to fuel saved in the required terminal correction should

define the optimum exchange between the two. Note that there is an addi-

tional complication introduced by reliab.ility considerations, however;

should one of the units fail, there is less fuel available (hence diminished

reliability) than before--we ignore this problem for the moment, however.

Suppose then that the (lo-) guidance and navigation accuracy is im-
1

proved by a factor _ by adding "m" additional G and N units. Then,
, @m

from Error Stuay I (above), the consequent time penalties resulting from

terminal corrections (expressed as fractions of the initial penalties) be-

come :

Fractional penalty, seconds

Position Error

Velocity Error
I_ 12_T

e x °

J e X O

(17)
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$

where T is the (apparent) optimal transfer time (382 seconds for the case

under conside ration).

Figure 2 is a plot of total transfer time versus percent error in

initiai position/velocity for optimum descent from 8 n. mi. orbit. A

single terminal correction at T = 382 seconds is made to acquire correct

terminal conditions.

Figure 3 shows net fuel penalty versus pounds of added guidance

and navigation units for the same optimum descent problem. By negative

fuel penalty, we mean net fuel savings. Net fuel penalty F(m) due to

adding "m" additional guidance and navigation units is:

F(m) = Fd(m) - Fs(m) (i8)

where F d is the fuel displaced by m additional units and Fs(m) is the fuel

saved by improved accuracy provided with m additional units. One ad-

ditional guidance and navigation unit is taken to provide a {1 or) probable

error in estimated position/velocity of 1%.

7
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O APPENDIX I

INTEGRALS OF MOTION

tan 8 - f from (3),
_+_t

= a sin 0 , from (1),

sin 8
tan e

• so that

= a

VI + (_ + _t)2

0
_(t) - _(0)

_ + _t

du

l+u

|

, where u = a + 13t.

x(t) =
O

x(t) - x(0)

a [ 1 (a+ _t) sinh_l ].+ _ sinh"

 fo' (- kot + sinh- ! (_ + 13t) dt + a sinh-l_t3 ) t•

so that

x
O  [ sinh-,o0]_ ,  .ljXo T _ usinh- u -

_+_T

lO



% APPENDIX II

VARIATIONAL SOLUTION FOR OPTIMUM DESCENT

The solution0 = tan'l ( 1 / provides optimum thrust control for

the descent phase described in this note, leaving optimum horizontal

range open for variational specification. For study of small excursions

about the optimum trajectory, however, optimization must be conducted

with horizontal range specified.

To formulate this problem variationally, we write

= a sin O

= acosO-g

(II-l)

with {x, y; x, )r)It:0 = {Xo, Yo; _Co' _'o) and {x, y; _, y)It=T

for the as yet unspecified total transfer time T. Hence,

=(0, o, o, o)

dt = 0

dt = 0

T

(T - t) a sin 0 + + Xo

.#

dt = 0

(T - t) (a cos e - g) + dt = 0 as before.

(II-2)

Again, the functional on 0 to be optimized is

T

T =_0 dt,

(II-3)

II



for which the Euler-Lagrange equation is

d'-_-ia0l " _- = o, (n-4)

subject to the integral constraints (II-2), Using Lagrange multipliers

k i, the equivalent optimization may be conducted on

_o Yo
F = 1 +kl(a sine+-T-) + k 2 (acos e -g+-T-)

:, :, . .... + k 3 T-t) a sin 0 + "T- + _¢ + k 4 (T-tl(a cos e - g) + ,

so that

k 1 cos 0 - k z sin 0 + k3(T - t) cos O - k4(T - t) sin O = 0, and

I I + Clt 1

Note that for the unspecified - range problem,

(iI-5)

C! - 0 as in Apollo Note 46.

12



APPENDIX III

OPTIMUM ONE-DIMENSIONAL TRANSFER

This note has shown that initial error in a single velocity component

results in both position and velocity errors at termination of an optimum

transfer. To determine the optimum thrust program for effecting terminal

correction, we are led to the one-dimensional optimization problem

illustrated in Figure III-l:

÷ a a- _. a

t = T Z t i T 1 t- 0

"iO[ O) (xi.V i ) (X[o, Vo )

_'X

Figure III- 1

Here we know only x ° and Vo; we wish to acquire (0, 0) in minimum time.

T l, T 2, x i and V l are as yet unspecified. Full thrust in the negative x

direction is applied until (xl, V l) is acquired at time T1; full thrust in

the positive x direction is then applied until the origin of phase space is

acquired at time t = T Z. The unknown quantities T l, TZ, x l, V 1 are ob-

tained in the following fashion:

O_ t __TI:

= -at+V
0

= . |
x _ at2 + Vot + xo

t = TI: V i = _ aT I + V o

- i aTi2+ VoTi +xi Z
X
O

13



O Tt --_ t --_ T2: _ = +a

= at+k i

x =.I
at 2 + kit + k 2

t = TI: V I = aT I +kl

I 2
x I =_-aT I + k ITi + k 2

(Solving .for kl, k2) V i = _ aT I + Vo

1 2
t = Ti xl = _ __aT I + TIVo +

T 1 T 2 =--_ t_-- : x = +a

t = TZ:

Solving

simultaneously: T 1

T 2

x
O

= at - 2aT 1 + V °

x = _at 2 + (V ° - 2aT l) t + aT 2 +

Remaining unknowns : V 1

X_

x
0

0 = aT Z - 2aT 1 + V °

0 = ½aT 2 +(V ° . 2aT1 ) T2.+RT2 +

,( )= -- V 0 + + axa o

= -- V 0 + 2 + axa o

" - + a_

V2 x
0 0

= Tg- + -g-

x
0

The positive sign for the square root was selected in solving the quadratic

for T 1 to provide physically meaningful answers.

14



The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

O
APOLLO NOTE NO. 176 C. Siska

9 March 1964

CHANGE IN AV REQUIRED TO ESTABLISH A LUNAR

POLAR ORBI T MEASURED RELATIVE TO

A FREE RETURN ORBI T I N

EARTH-MOON PLANE

1. APPROACH TO PROBLEM

1. 1 Principal Ground Rules

a. Launch from 28.5 ° latitude (Cape Kennedy) into E-M

plane. This implies launch in the 1968-1969 period when the Moon's

orbit inclination is 28.5 °.

b. Lunar polar orbit will have same shape as lunar phase

of free return orbit; only the orientation differs.

c. Injection radius (and therefore parking orbit altitude)

will be the same in each case.

d. No orbit plane change is considered after launch.

1.2 AV Required

From 1. l(b), lunar deboost will be the same for both free

return and lunar polar orbits, therefore the only change in velocity

required here is at injection in order to establish the proper Earth

phase orbit which yields a lunar polar orbit.

From 1.1(c), the only velocity change required is at ascent

burnout due to different launch azimuth (or equivalently, different

orbit inclination to Equator). This AV has to compensate for the

e_fect o5 Earth's rotation speed at different launch azimuths, since

the inertial velocity in the parking orbit remains the same in each

case.



O

2.1

2.2

2. REFERENCE TREE-RETURN ORBIT

Earth Phase

Manipulating graphical results in NASA TR R.-122 yields,

V ° = 35830 fps - injection velocity

Yo = 200 - injection angle to local horizontal

r = 4100 st. mi. - injection radius
_, ,-: ,_, .......... _O _ ": " .... _ •

._ 90 ° - lead angle of Moon relative to injection

position

72 hours flight time from injection to perilune

(approximately 60 hours to LSOI plus 12 hours

to perilune).

Lunar Phase

The following values are used,

V S = 3920 fps - selenograPhic velocity at LSOI

4 ° - flight path angle measured from inward

direction of radius vector (i.e., _ = 0 directed

toward Moonfs center)

_'- = 51 ° - West longitude (E-M plane) of LSOI entry

-- 0 ovi = - latitude (E-M plane) of LSOI entry

100 st. mio is perilune altitude.



O
3. GEOCENTRIC ORBIT ELEMENTS AT LSOI

3. 1 Method

The equations used to obtain the elements are described in

NASA TN D-1780, quantities being referenced to the E-M plane

(x, y, plane) with x axis as the E-M line at LSOI entry (see Figure 1

for notation).

The situation defined in Section i. l(b) requires the geometry

of F_gu_re 2, ._Qr the polar orbit going northward, t he variable @ = _ = T]

(latitude) and the longitude is _ = $- - 9, where 6, _] is the LSOI entry

position.

O

3.z Geometric Elements, etc.

Quantities were computed to the first order in _.

Free-Return Orbit Perturbcd Orbit

X/RLs = 6. 040 X/RLs = 5. 989

Position

Components
---V/RLs = 0. 777 at LSOI Y/RLs- = 0. 731

_/RLs = 0 z/RLs = 0.0698

X/RLs : 0.681 x/RLs : 0.681
Velocity

Components

.-V/R_: o.zsz atLsol _-v/R_: o.zsz

_/RLS = 0 _/RLs = 0

$
3
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Figure 1.
Notation

POLAR i _ _ _MOON ]

FREE RETURNA\

ENTRIF-.$WITH V$ _lJ/ _
W_=CHYIELDS / _
C_NSTANT SHAPE /
LUNAR ORBITS / _ LSO ! INTERSECTION

/ WITH EARTH-MOON PLANE

1"TO
EARTH

Figure Z.

Relative LSOI Position for Polar Orbit
4
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Free-Return Orbit

m

h
X

= 0
RLSVS

m

h
Y = 0

RLsVs
Momentum

Components

Perturbed Orbit

h
x

RuSvS
= -. 0176

h
Y

RLsV S
= .0475

h
z

= 0.995
h

Z

RLS V S
• = i.013

n

h

R sVs
O. 995 Momentum h

RLS VS
= 1.0143

Radius to LSOI

r Entry r= 6. 067Z

RLS Position RLS
From Earth

= 6.0366

From the momentum components we obtain the inclination i = 2.94 °
O

= i l 8 ° relativerelative to the E-M plane and the descending node,J_ °

to E-M line at LSOI entry for the perturbed orbit.

4. CHANGE IN INJECTION CONDITIONS

Note in Section 3.2 that to 1st order in _, the velocity components

do not change, the momentum increases for the perturbed orbit while the

radius to LSOI entry decreases (with consequent decrease in energy since

the velocities are the same). Thus we have

Ah h-h"

- RLsVs = .0193 (more momentum for perturbed orbit)

_E (_) 1013
RLSA E = Ar = -I. 17 x ft3/sec 2 (less energy for

(r'_L_ perturbed orbit)



At the injection position, since _"
O

AE = V ° AV°

= ro, we have

Ah = r O (AVO COS L - _-o sin To AN o )

Evaluating these expressions, we obtain

AV

A"yo

= -17. Z5 fps (less injcction velocity)

= -3. IZ ° (smaller injection angle)

5. OTHER CHANGES FOR PERTURBED ORBIT

_p = . 1495 x 107 ft. semi parameter

Ae = 1. 072 x 10 "3 eccentricity

Av
o

-6.79 ° true anomaly at injection

Av I = -0.962 ° true anomaly at LSOI intercept

6V = Av I - Av o= 5.82 ° central angle change,

injection to LSOI entry

AM = -.157 rad. mean anomaly change,

injection to LSOI entry

At F = -9.91 hours flight time change,

injection to LSOI entry

6. TIMING FOR REFERENCE ORBIT

Each day Cape Kennedy (28.5 ° latitude) touches the E-M plane

(inclination 28.5 ° ) once, and can therefore launch into the E-M plane

at time t'-Li on the (i)th day. At this time the Moon's position (relative)

is an angle U i (see Figure 3).



(

MOON
ORBIT

LSOZ

MOON AT LSOZ INTERCEPT ('_INT)

MOON

AT INJECTION (_'a_j)

T+Q-U
MOON AT LAUNCH (t'l. }

INJECTION

TO PARK _b SCENTC

MOON

T=LEAD ANGLE

LAUNCH
MERIDIAN

Figure 3.

Timing for l_eference Orbit
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At injection, the Moon's lead angle T iS already known for the

reference orbit (Section 2. I). The possible launch times are known

also from the lunar empheris (right ascension of max. Moon declination

and associated me ridian passage by Cape Kennedy). Additionally the

angular separation U i is known for the launch times tLi. It remains to

fix the proper relative injection position, angle _.

The time between launch and injection for the lunar vehicle

encompasses the time to ascend to the parking orbit, time to traverse

the angular difference between the injection positions (parking orbit and

transhln_tr)and the time _n parking orbit for n complete revolutions.

Thus, _--6a- = -- _ Zn=
tinj "t'L Atascent + _i scent +

CO CO

where

CO

V
CO

r
0

-- = circular orbit angular velocity.

Simultaneously (Figure 3) the Moon must travel,

Thus,

Qi =

acceptable angles

,
tOM co/

Q'-?. are from the above conditions,

- U.-'r

Z_'_r A¢ascent + tOMAt----ascent + co
CO

Each _i leads to a different Moon position at LSOI intercept

and we will look at the effect of this on launch azimuth.

7. TIMING FOR PERTURBED ORBIT

Using the relation for t-inj - t% in Section 6 and the fact that

the time from injection to the Moon to LSOI is the flight time, "IF'

we can write for the time from launch to LSOI as



O F

tint " tL = tF + scent + COco

m

2nw
+

CO
CO

In a similar vein for the perturbed orbit

I . Q - A_ascenttin t - t L= t F + At ascent + COco

_nw
+

co
CO

Assuming that in each case the same number of revs. in

the pa.rkingo:_blt:l_revaiI, we have n = _. Further assume that the

possible changes in the ascent path are negligible so that At -_A'-'_
ascent ascent

and _--_ascent = _---_ascent" Thus subtracting the above equations

results in

(tin t - _-int) - (tb - FL) = (t F -t-F) + co
CO

Now the difference in absolute intercept time of the LSOI is

reflected in the change of the E-M line at intercept (See Figure 4).

Thus

w

(tint " tint ) = coM (¢°M = angular velocity of Moon)

The difference in launch times (Figure 4) can be expressed as

(t L-t-L) =
=/z -w

COE
(¢_E = angular velocity of Earch)

Consequently the required injection position for the perturbed

orbit relative to the launch position Q can be written

-- z w/Z -W ]Q A t F + COM COEQ = COCO COCO

The value At F is already known (Section 5, At F = -9.91 hours).

From the spherical triangles in Figure 4 we can obtain the values
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Q, W, Ak, iE in terms of Q- and z. Thus for each Q-q associated with

t-Li there is a distinctive value of z required for proper LSOI intercept

to ensue, for the perturbed orbit.

In Figure 4, reference orbit quantities Av, tF (central angle

and flight time from Moon injection to J__OI) are 124 ° and 60 hours,

respectively. Values iO and r O are already known. Quantities m,

can be obtained using Figure 5 where r (r--),_ (_), z, (z--)are knoven.

Note that as z changes in Figure 4 that the inclinalion iE changes

and so does_the angle AI, %vhich determines how much of the Earth's

rotation speed is lost in developing the inertial velocity of the

parking orbit.

8. AV REQUIRED IN ASCENT

Referring to Figure 6, the required boost burnout velocity is

O
wher e

Z -- 2 2

vB - (v + vB) + v - zv (v + _-_) cos_A• (.0 _

V = R E c0E cos 6 L

Considering that L V B = V B - %' we obtain to the second

order in AA,

AV B

V

(zxA)z [
Z V¢_

I-- V-
co

where AA = Tr/Z - A 1 which is a function of the value Q--.

9. RESULTS OF CALCULATION

Results are shoxvn in Figure 7. Different values of Q correspond

to different Moon positions at intercept. The 90°-W curve shows that

launch is delayed up to I. 7 hours (15 ° longitude change per hour).

11
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O

EARTH

RLS

MOON AT LSOJ: ENTRY -
PERTURBED ORBIT

AT LSOI
ENTRY -
REF. ORBIT

EARTH-MOON

PLANE

Figure 5.
More Notation
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_ _ INERTIAL DIRECTION

j,..j OF LAUNCH -
_,,, _ __ __8 - ------_, REF.ORbiT

--__-,,-, .L _ J

INERTIAL DIRECTION

/ --o;k_292oo._,T -

Figure 6. 13
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AV B = Change ascent boost velocity for parking orbit

90°-W = Change in longitude of launch position

Z " Difference in Moon position at LSOI entry for

perturbed and reference orbits
I

i

J

V°
!

i "_(de_) ] 5

--Z0 __.

_.
• _Q

_° _

_ .... 7---_.i_
-60 -40 -20 0 Z0 40 60

Q (degrees)

Moon Injection Position Relative to Launch

Figure 7.

Changes Required For Perturbed Orbit

14
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The perturbed orbit flight time is roughly 9.9 hours shorter

and therefore the value z shows this, since the Moon moves at about

I/Z ° per hour.

AV requirements over-all are small since the Moon injcction

is approxirrately 17 fps smaller while the ascent boost is up to 40 fps

higher. If no jettison occurs from injection into parking orbit until

injection to Moon, the weight landed on the Moon doesn't change

appr eciably.

O
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 177 H. Engel
10March 1964

ACCURACY OF POSITION AND VELOCITY

DETERMINATI ON DURING BOOST

The Kalman-Schrnidt method of determining orbit parameters

has been shown to provide a best linear estimate of these parameters.

In spite of the warnings given about the use of the I<alman-Schmidt

method t0 determin.e actual orbit parameters, it still provides a use-

ful tool in determining the error covariance matrix of the maximum

likelihood estimated trajectory parameters during boost.

The Kalman-Schmidt method is not restricted to free-fall

orbit determination but may be used for any kind of motion for which

the necessary measurements can be made and for which certain

necessary matrices are known.

Before proceeding further with this discussion, let us once

more define the quantities used in the Kalman-Schmidt method, with

special attention to this particular application. We have

t
n

Time of n-th set of observations.

x
n

State (column) vector at t . The elements of x
n n

in this problem are the components of position,

velocity and acceleration at tn, and any other quantities

to be estimated at tn, such as measurement biases.

Yn
Measurement (column) vector at t . Each element

n

corresponds to one measurable, whether or not that

quantity is used at t .
n

Measured value of Yn"



u
n Zero mean random noise vector added to Yn that

• results in y_. Yn = Yn + Un" This noise has zero

mean since all biases appear as part of the state

vector.

Qn Covariance of the noise u n. Qn is assumed known

a priori, and the noise at t is assumed to ben
uncorrelated with the noise at any different time

tm

6n+ 1 Square matrix that transforms orbit parameters,n

on a trajectory near the reference trajectory at

time tn into orbit parameters on the same trajectory

6n+ below.at tn+ 1. We discuss 1,n

M n Rectangular matrix relating Yn and Xn. Yn = Mn Xn.

Its elements are the first partial derivatives of

the measurables with respect to the trajectory

parameters.

x':' Best estimate of x
n n

E (x,:, - Xn) = O.n

based on all y,_ for i _n.

n
Covariance matrix of errors in estimated state

P",' = E [(x" n -Xn)(x: n - xn)T 1vector at t n. n j

In addition we must introduce the following quantities for

powered flight,

v
n Zero mean random noise added to Xn, corresponding

to an uncontrolled change in acceleration between

the interval from tn. 1 to tn and the interval tn to

tn+ 1"

Z



O
W

n
Covariance matrix of v . W is assumed known

n n

a priori and the noise at t is assumed to be
n

uncorrelated with the noise at any different

time tm.

From Appendix A of the Bissett-Berman Final Report on

Contract NASw-688, Amendment i, "Capabilities of MSFN for

Apollo Guidance and Navigation, " we find successive values of

x::_n....................anti P'_,'.............glven_...................values Of 6n+l, n' Mn' Qn' x::_Oand P_:¢o,from

iteration of the following set of four equations.

A':' = 6 P::' M T (M p,:, M T + On )- 1n n+l, n n n . n n n

@

6 ::_ = 6 - A _:_M
n+l,n • n+l,n n n

P':_ = 6" p,:c 6T
n+l n+l,n n n+l,n

x,:¢ = 6::_ x::c+ &::_ ":¢
n+l n+l, n n n Yn

in which A:n and 6_n+l, n are defined only by these equations.

In that report, however, there is no noise Vn, since the

vehicle is in free-fall. We must correct the expression for P:n+l

to include the effects of v n. From that report we have

P'_+I = E [ (x:_+l-Xn+ I) (x_+ 1 -Xn+l )T ]

and in this note we must use

Xn+l = 6n+l, n (Xn + Vn)

3



instead of

Xn+ 1 = x6n+ I, n n

Since we assume v
n

we find

to be uncorrelated with any other quantity

P'n+l = 6%+I n P'n _T + _n+l, W 6T, n+l,n n n n+l,n

........... Now,. we are not interested in finding x_+l, so we need not

evaluate _'_ and 6_+l,n separately. Instead, we may combine the

above equations. We find by substitution that

_':' = _n+l, [I - P':' M T (M P':-"M T + Qn )'1 Mn+l, n n n n n n n n

and then

P':n+l = 6n+l, n [ P':n " P':_MT (M P':'M T + Qn )'l M P,:-"+ Wn n n n n n n n 6Tn+l, n

The number of matrix multiplications can.be minimized if we

write this as

(MnP:n) + On)"P_h+l = 6n+l,n P'n " T ((Mn p._) Mn T 1 (MnP,h) + Wn n+l, n

This one equation provides a means for iteratively finding

P_ if _n-l,n' Mn' Qn' Wn' and P_:; are known.

Let us next find an expression for 6n+l, n" Initially we shall

restrict ourselves to the case in which there are no biases, drift

rates or scale factors to be determined. We shall assume that the

time r between tn and tn+ 1 is independent of n, and that the acceleration

due to thrust is constant within each interval. We denote the components

•
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of thrust acceleration within the interval tn to tn+l by axn , ayn,

Then for any trajectory near the actual trajectory

a
zn

$

Xn+l

I'

Yn+l i

, I.=t
Yn+l !

Zn+l i

x n+l

Qe

Y n+l

oe

Z
n+l

.l

Z
T

1 0 0 T 0 0 _--

0 i 0 0 T 0 0

......0 0 l 0 0 _- 0

• 0 0 0 1 0 0 T

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 O 0 0 0 I

0 0 0 0 0 0 0

001Z
0

2
l

o o!

T. Oi

J

0 T;

l

.0 O:
i

!

1 0 ':

I

o o o o o o o o i!

x
n

Vn

2..

z n

n

Qe

Yn

oe

z
n

6n+l, n

p

n

Yn

Z
n

x
n

Yn

N

Z
n

oe

X
n

! oo

Yn

Z
nL.
J

where Xi' ?'n' "_'nare displacements from the reference trajectory,

and ignoring any difference in gravity between points on the reference

trajectory and the neighboring trajectory. Let us deten_nine the effects

of these gravity differences separately since we intend to show that

they may be neglected.

We let _'be the vector from the center of the attracting body

to the vehicle. The gravitational acceleration is -_-/r 3. For a

vehicle at a slightly different position r + Ar, the difference in

gravitational acceleration is



g
_ .F (r + Ar) + _.Fr

(r + At) 3 r 3

A
in which r

_ A
- _-- (_r-3 Ar r)

3 + higher order terms

is a unit vector in the direction of r.

(2 Ar_2 + ( A r
,)2

T

Then,
,/z

r

in which Ar, Ar and Ar are the three orthogonal components of
v p

Ar. For a LEM in the vicinity of the Moon, r is of the order of

1.7 x 106 meters and kt is 4. 896 x l012 mcters3/sec. 2 Assullaing

that the magnitude of Ar is less than 500 meters, we find that
2

IALI is less than '2 X 10 -3 n_eters/sec. The ascent burn time is

about 140 seconds. In this time the difference in gravitational

acceleration due to a constant position difference of 500 meters

results in a velocity error of 0. 15meters/see. and a position error

of 5.0 meters. These errors are negligible conapared to those that

will result from thrust magnitude and direction uncertainties and

hence we are justified in neglecting them in the analysis of LEM

ascent. A similar analysis must be performed to justify this

assumption in other operational situations, but we shall leave that

for other Apollo Notes.

In the case of a LEM ascent observed from the Earth the

geometry of the Earth-Moon-vehicle system does not change greatly

during the 140 seconds of boost, so in the error analysis we can use

a fixed matrix M instead of M n. It has already been shown that

for fixed measurement interval 6n+l, n is independent of n, so we

6
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may write it simply as 6. Also, during LEM ascent boost O n is

independent of n, and we assu_me W is independent of n. The
n

iterative equation for the error covariance matrix then becomes

p_:_ =
n+l -I Ip_- (MPn) T / (MPn) MT + Q (MPn) + W 6

and may easily be evaluated using a digital computer.

If there are additional parameters in the state vector, such

as _; Orlefifafioh; tinge biases; and so forth, then the 6 and M

matrices must be augmented, but this is not difficult.

It should be borne in mind that this note indicates only how

we can find out how well the error covariance matrix can be determined

during boost, It provides no clues as to how to actually determine the

trajectory parameters. That is for a later note.
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POWERED FLIGHT TRACKING

l. RELATIVE IMPORTANCE OF POSITION,

VELOCITY AND ACCELERATION

The problem of radio guiding the LEM during the lift off from

the Moon is the same as that of the radio-guided Atlas in the sense

we are adjusting the position and velocity of LEM so that after LEM

Cut-off, it will be on an impact trajectory with CSM. Computationally

this is done continuously towards the end of the boost by computing

the position miss which will occur assuming the boost is stopped now.

The vector miss equation involved is of the form,

M'(T,t) = [Tp (T,t)]. R (t) + [Tv (T,t) ] • V(t)

where the bracketed expressions are transformation matrices which

relate components of present position and velocity to conditions at

rendezvous. Terms in the position transformation are non-dimensional

while those in the velocity transformation have the units of time.

Considering the leading terms, for 180 ° transfer orbit we see that

position magnitudes translate about 1 to 1 while for the most sensitive

velocity component, (the magnitude at injection) the scale factor for

the rendezvous is about 4150 sec. That is, 72 n. mi. altitude change

for a 106 ft/sec, speed change.

we have,

AM = Z_Rf + tcoas t

Thus, from a miss point of view

AVf,

witht _ 4150 sec.
coast

Now the LEM starts off from the lunar surface where it has

been sitting for some period of time. Therefore, the MSFN has had

EXbrook 4-3270

(1)

(z)



plenty of time to determine the position (hence the velocity of the

ianding site due to Moon spin), and so if the MSFN can determine

the velocity of the LEM during ascent every (ts) sec. with a random

error (dr) then the position error is a random walk of magnitude

((dr) ts) and this will be repeated (tb/ts) times where t b is the

burn time. Thus,

= (dv) Vftb ts= (drts) s

so if (dv) is of the same size as Av Iwe get

AM = [tb_s +4150 sec ] Avf

Now for the LEM tb _- 135 sec., so that with 1 sec. samples

_b _, lZ sec. which is cornpletely negligible in comparison witht s

the velocity scale factor of 4150 sec.

Since the coast trajectory is completely determined by the

position and velocity at cut-off, acceleration of the vehicle at cut-off

doesn't effect the miss at all, so like position, is unimportant.

Now for a 180 ° transfer, the azimuth component of velocity

doesn't affect the miss at all; we get to the same point at the same

time in half an orbit regardless of inclination angle. However, any

azimuth error at injection must be corrected by an equal component

of plane change in addition to circularization at rendezvous. Thus

to keep the required boost velocity within the available fuel pad

we must keep the azimuth velocity error small. Then since the

magnitude and initial altitude, rate directly affects the miss, we

see that all three components of velocity are important.

Finally, because of fuel pad limitations we must keep the

velocity near the programmed velocity schedule throughout the

entire boost phase. That is, if we boost in the wrong direction
.s

early, we don't have the fuel to cancel the error and then add the

right value. Thus we must keep the velocity nearly correct throughout

(3)

(4)



the burn phase and the Moon's position will stay near the planned on

value and so the actual Moon's gravitational acceleration will stay

very near to the planned on value and for error studies the gravitational

differences can be neglected.

Thus, we conclude that during the ascent phase, we simply

want the MSFN to keep accurate track of the LEM velocity vector.

O

2. VELOCITY DETERMINATION WITH

.......... UNI(NO_VN RANDOM BOOSTS

In this section we consider the following operational situation.

The LEM starts from rest from a known position on the lunar surface

hence its initial velocity (due to the Moon's slow spin), is also known.

On the ground we assume a three station MSFN system operating in

the doppler mode so that we can make a sequence of measurements

of the vector velocity of the spacecraft. These samples of measured

velocity are in error and we assume the sample errors to be uncorrelated

with a norxnal distribution and zero mean.

In addition to the velocity measurements, the MSFN will be

assumed to have data on the velocity chan_cs which are applied to

the spacecraft between the times the velocity measurements arc made.

In the following analysis the MSFN knowledge of these changes will be

assumed to be in error with these errors uncorrelated, norn_ally

distributed and of zero mean. This assm_ption then corresponds to

either of the following operational situations.

a. LEM under manual control of the astronauts who

are trying to follow a boost program which has been or is being sent

to them from the ground. There is no operational LA/IU or st,'apped-

down inertial system on board or if there is, the outputs ar_ not

being telemetered to the ground.

b. LEM under either manual or automatic control with

a "noisy" inertial system which is making random errors in its

measurement of the velocity changes which are actually applied.



Note that. under this assumption as far as the error which the

MSFN makes in estimating the velocity of the LEM, it makes no

difference whether the velocity changes actually have random errors

or actually have no errors but with the inertial system telemetering

unknown random errors which are then used by the ground system.

We now consider each of the three components of the LEM

velocity separately and calculate the most likely value of the

component (VN) after a set of (N) measurements have been made.

The ground has two sets of data to use for estimating V N. First the

seZ of rneasfired values (V m 1, Vm2 ..... VmN)

where

Vmi = V i + e vm i (5)

and secondly has the set of measured or assumed changes

{AVal, AVaz, Z_VaN)

where

with e V
m"

s elves an_

Vai = Vi " Vi-1 + eAV . (6)
al

and eAv normally distributed, uncorrelated (with them-
ai Z Z

each other), zero mean, and variance o- V and O-AV respectively.

changes we have,

Now given the set of (N) measurements and assumed

1 exp 1(VN' VN-1 .... V1)= N N " -Z-

N

12
°-V i=l

with V ° = 0

N

1 _. Vai)Z+ -r- (v i- vi. 1 -A
°'AV i= 1

from the assumed known initial condition.

4
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Denoting the maximum likelihood estimators with a hat (A)

we then have the set of simultaneous equations after the N measurements,

85 1 ^ 1 A A
^ = 0 - z (VN-VN) + Z (VN'VN-I

OV N o- O-AVV

- AVaN)

aL 1 ^ I

^ "= 0 -- 2 (VN-I - Vrn(N-l)) - Z
@VN- 1 °-V a-AV

A

(VN " VN- I-AVaN)

I a A

+ Z (VN-I - VN-2 " ZXVa (N- 1))
O-AV

and so forth down to V I. The analysis difficulty now is that after

each new measurement, we should revise our estimates of the

velocity at all of the past points. This difficulty is however easily

side-stepped by first considering the best estimate of V N just after

the (N-l) measurement hence before the N th measurement. Then

on the basis of the (N-l) measurements (Vm) and the (N_) assumed

changes (g_Va) we have,

F
1 _ 1 | 1

_(VN' Vn-1 .... V1) = N-I N-I exp _ ---_

o% °-z_v (z_)N-I [ _v

N-1

_. (vi-Vn_)z
1

N+ ----2-- (V i Vi_ 1 - A Vai )Z

°-Z_V 1

Denoting the maximum likelihood estimate of V N based ona

the (N-l) velocity measurements by V N (N-l) we then have

(7

(8)

5



_ 1 ^ ^
,, - 0 = Z {VN(N-I) - VN-I(N-I) - _VaN)
VN(N- 1 ) o-AV

^ ^

so (8) VN(N-I ) = VN_I(N-I ) + Z_VaN.

Now from the form of the equation (7) we see that the estimators

for V N etc. , depend linearly on the measurements and from (8) we

see that VN(N-I ) depends linearly on VN_I(N-I ) and Z_VaN. Thus

taking 9xpected:values, the linearity dependence plus the zero mean

assumption means the expected error in _N (N-I) will be zero so it

will be unbiased. Next the linearity dependence plus the normal
h

distribution of the measurement errors means that VN(N-1 ) will be

normally distributed, with a variance which is easily calculated

from (8) as

Z
o-A

VN(N- 1)
[^ 2]= E (VN(N-I) - VN)

= E (VN.I(N-I) + AVaN- V N) Z

A
= E (VN_I(N-I) +V N " VN-1 + e V " VN )

Z_ aN

(9)

Z Z
o-^ + o-

VN- I(N-i) AV

^

since Z_VaN is not related to VN.I(N-I ).

Thus we can write the conditional probability of V N givenA

VN_I(N-I ) and fkVaN as

P (VNIVN.I,AVaN)= K exp

IV N ^" VN- 1 (N- 1) - ^VaN }

Z
Z (o-/, (N- 1) + o-m,_) .

VN.1

(i0)

6



Now because of the uncorrelated nature of the measurements

andbecause VmN cannot be used before it is measured, it is not' A
involved in VN.I(N-I), the likelihood of V N after the measurement

VmN can be written in the form

A

L (V N) = 14 P (V N [VN_I, VaN) exp -
(VN'VmN)

2
v

(II)

Using (10) and { 1 1) and solving for the maximum likelihood

estimate V_., we get.
IN

A ^ ^

(V N - VN_I(N-I ) - VaN) (V N - Vrn N)
8L._.L 0 = +
^ = 2 2 2

8V N o- ^ (N-l) + o- o_
VN- I _V

so after the N-th measurement we have

^ ^

VN= kN VrnN + (l-k N) (VN_I(N-I) + aVaN) (IZ)

where

k N
A

1
Z

°'V 1

1 1 Z
---2--+ z z

o-^ +%v 1 +
VN.I(N" I)

2 2
o-^ + CC&V

V N .I (N-l)

(13

No confusion will now result if we use the notation

2 Z
O'^ = O--&

VN_I(N'I) VN. 1

A

and since V N is now a linear combination of terms, each of zero mean^

error, the expected value of V N will be V N and so from (iZ) the
A

variance of V N will be

(14)

7
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2 2 2 2 (o2 2o_^ = ×N °-v + (I-_N) + _v )
VN VN- 1

and using (13) we find after simple arithmetic

1 1 1
---2--- = 2 + 2 2

o-V o-_ + o-AV
VN VN- 1

(15)

and since o-
2

Vo =0,

or

1 1 1
2 = ----2- + 2

_V 1 _V _V

O-

Vl _ °-AV/_ v
(16)

also letting N become large so

2 2
O"^ _ O" A

VN VN- 1

from (15)we get for o-A

Vco

8
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II(V°° = °-AV 1 + 4 Crv

_v C-z- _v %_vl
-1 (I?)

Equations 16 and 17 are plotted in Figure i versus the ratio

o-z_v/ o-v .

Now from (12) if we made k

making the estimate (VN),

V N = VmN

= 1 we would simply beN

with

o-

VN
_= 1

_v
(18)

Finally if we let

V_'_t = k VmN + (l-k) (Vm(N_I) + VaN)

and we choose k to minimize E (V'_4 - VN)

1+ / °-Z_V / Z

k =

/_v I_

we find easily

and

9
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O- _:¢

V N 12
2 +I°Xv12

tovJ

(19)

and these results are also shown in Figure i.

This result is then interesting since the figure shows that

unless o-AV/ o-V is well less than one, both the old measured data

(Vmi) as well as the assumed or n_easured velocity change data

(AVai) improve the ground system's knowledge of LEM velocity

very little, and the better estimate VN, based on a single old piece of data

is very nearly as good as using all the data. Also, the figure shows

that even when (O_v/ O-V) is small, the uncertainty in LEM velocity

increases only a small amount with (N), (i.e., as time progresses

during the ascent).

3. MSFN VELOCITY MEASUI_EMENT ACCURACY

First consider the MSFN stations operating in the Doppler

mode. Then the measured i_m is the scalar range change (AR)

divided by the sampling time (ts). So without noise,

m

AR + eLxp{ts}

t
s

Now if over a measurement interval R is quadratic in form

so

R {t} = a + bt + ct 2

(20)

(Zl)

10
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• a + bt + ct 2 + eAR-a e

R = ---- = b+ct+ AR
m t t

S

(22)

and from (21)

R (t/2)= b + 2 c (t/2)= b + ct (23)

O

Thus if R is varying quadratically the measured doppler value

(I_m) is related to the instantaneous range at t/2 as,

• • e
AR

= R (t/z) +Rm t
S

Now due to the small angle (0) between the line-of-sights

from the different MSIZN stations to the spacecraft, the errors in

the components of LEM velocity in the plane normal to the Earth-Moon

line get amplified by the factor (1/0).

Thus if the landing site is in the center of the Moon and the

MSFN stations are separated by 5000 n. mi. (83 °) so

(Z4)

/

250 000
(1/0) = ' = 48, then the measured spacecraft

8, 000 sin (83/2)

altitude rate will have a o- equal to the o- of measured doppler while

the other two components will have o-'s which are the measured doppler

o- multiplied by 48.

Using a rubidium frequency standard and a 50 sec. sampling

time, JPL on the Mariner II flight found 17 cm as the maximum value

for the random value of the 50 sec. measured doppler range change.

If the source of this final error was uncorrelated at 1 sec. sampling

times, this would indicate that for 1 sec. sample times,

17 = 2.4 cm/sec.
o-_ - ¢-g0-

so with the "wind up" factor of 48 for two components,

(Z5)

12
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o-V = 115, I15, 2.4 (cmlsec.)

- 3.8, 3.8, 01 ftlsec,

with the smallest error in altitude rate.

Now assume that near the end of ascent the LEM has an

acceleration of 20 ft/sec. 2, and the astronaut does 6 ° steering.

Then for 1 sec. samples,

6
O-AV = (20) (1) (-'5"q)- Z ft/sec.

(Z6)

(ZT)

Thus

O-AV

%
• 5, . 5, ZO

and from Figure 1, the use of the old data would reduce the o- of raw

measurement velocity by only a factor of ; 65 in two components and

not at all for altitude rate yielding:

o"_, = Z. 5, 2.5, . I ft/sec.

(Z8)

(Z9)

and so the old data and assumed velocity changes do not improve the

accuracy very much.

A more important problem is due to the transit time delays

which makes the MSFN orders about 3 seconds behind and this requires

extrapolation through the assumed (AV) changes. This problem will

be treated in a later note.

It appears that even with station location, speed-of-light,

instrumentation errors and assumed biases, and transmission delays,

a 3 station MSFN operating in the precision doppler mode may be able

to track the LEM velocity to 10 ft/sec, during the ascent phase.

13
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APOLLO NOTE NO. 179 C. Siska
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ANALYSIS FOR A ONE BOOST MI DCOURSE CORRECTION

TO THE RETURN TO EARTH TRAJECTORY

Introduction

As the return vehi cle leaves the lunar sphere of influence

in returning to Earth, it will generally be on a trajectory which

misses the re-entry dive angle "corridor" as.a result of transearth

injection errors.

The present report develops equations regarding the questions

of how much boost velocity is required in making a single midcourse

correction to nullify the initial dive angle error, and how accurately

the eventual re-entry conditions are established. Subsequent studies

will examine the more complicated situation of multiple boost

corrections.

Discussion of Orbits Involved

In order to define the various orbits which must be considered

and some of the symbology used, a brief discussion of the correction

process follows with the aid of the schematic diagram in Figure 1.

Generally three different orbits are involved, all of which are

fairly close to one another. First is the reference orbit which repre-

sents the desired objective for the return mission, Pr6perties of this

orbit will be labeled with a subscript zero. The second orbit (sub-

script A), is the one which the vehicle is actually traveling and this

orbit is assumed to contain an unacceptable dive angle error which

is to be removed via a boost correction. The third orbit is the one

which is predicted from observational data, and properties of this
A

orbit will be signified by circumflexed parameters (e. g., 6F).

When a boost correction is applied, the latter two orbits will

be changed and therefore additional subscripts 1 and Z are used to
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signify the orbits before and after correction.

At some time to (position (a) along the predicted orbit), a

boost correction is computed so as to nullify the predicted dive angle
A

error 6F1- 6F0 , and therefore the predicted orbit after boost will
A

have an estimated dive angle 5F2 = 5F0. In actuality the executed

boost at to is applied at position (b) on the actual orbit and results

in changing the re-entry dive angle 6FA 1 to 6FA 2 with an error

8 FA2 - 6 F0"

Using only a single boost correction, the standard deviation

of the value {6FA 2 - 6F0 ) must be of such magnitude that the safe

re-entry criterion is satisfied. For our purposes this implies a

re-entry dive angle o- 0. 1°= associated with a zero lift atmospheric

trajectory to landing.

Corrective Boost Components

As observational data is gathered on the actual return orbit,

a predicted orbit can be determined. At any given time, the pre-
A

dieted re-entry dive angle o-F1 can be obtained from the predicted

orbit parameters/ and generally; the greater the number of data the

closer the value 6F1 approaches the actual value 6FA 1. The desired

objective is to have an orbit with a re-entry dive angle 5FO, the same

as the reference orbit. To accomplish this end, a single boost correction

is made, based on the predicted orbit parameters, which changes the
A

value 6FI to 6F0.

Using a local x, y, z, earth-centered coordinate system with

x along the local vertical, y perpendicular to x and in the direction of

motion, z out of plane, and corresponding velocity components

_, #, _, the required condition (linearized) can be written,

O6F " + -- m# +( 1 -6FO) =°
/i aYll

(1)

3



/%
the components Ax,

following relations,

/k A

Here Ax and A_ are the estimated boost components and we
A

wish to select these so as to minimize the resultant boost velocity AV.
A_ A

Equation (1) is a straight line in the Ax, A_ plane and therefore the
A

minimum AV is a vector normal to this line from the origin. Labeling
/k ^ ^

Ay of the minimum boost as u, v, we have the

_" 2 ^2
AV = u IcA 1+I lil0

-I

A
u

/x

c)186 F
+ --

;%
v

-_-_0_ _-T_I,L¢_A-I., _---7

To change the orbit plane requires a boost component of

velocity in the z direction--this consideration is neglected in this

analysis.

-l

(z)

Boost Execution Errors

The consideration of boost execution errors will involve the

following simplifying assumptions,

a. The boost velocity error Ve, with components u e,

v e, w e will be pointed equally likely in all directions.

b.
The variance in V e will be proportiona.__l to the variance

in the delivered velocity AVD, i.e. , V 2e = k2 _V2

4
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As a consequence of (a), the velocity error components satisfy

the following relations,

2 2 Z 1 V 2U = V -- W =
e e e 3 e

n m

U = V = W = U V = U W =V W = 0
e e e e e e e e e

(3)

The delivcred velocity in terms of components associated with

the predicted orbit can be written,

(Au e)Z Ve)2 2AV_ = + u + (v_= + w e (4)

%

from which, using Equation (3) and assumption (b) above,

- Z_V
e I -k z

= V = W 2V RUe e e = -_

we obtain

(5)

Re-entry Dive Angle Error

Writing the delivered boost components in the local coordinate

system of the actual orbit as UA1, VA1, WA1, the resulting re-entry

dive angle is

6FAZ = 8FAI + + -- VAl

1 a y lA1

uA ^, v + v results•The difference between UAl VAl and + Ue' e

from the difference in the local coordinate systems associated with

positions on the predicted and actual orbits. This difference is a

second order quantity and can therefore be neglected in a linearized

analysis, so that Equation (6) can be written,

(6)

5
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O

+l{ -_-_A1 °+ o-_ A-1°

In view of Equation (2.)
.

08 F Aand since u u

Ok l

to first order, the second term on the right of Equation (6) is just

- (%1 -6F0 ). Therefore, Equation (7) becomes,

I<,><"')1(SFA z _ 6F0) = (SFA 1 _ 6FI)+ F Ue + Ve

[k Ok A1 _ A1

(7)

(8)

Equation (8) shows that the final dive angle error due to the

error in predicting the actual orbit and the error in boost execution.

Since these errors are independent and in view of Equations (3) and

(5), the variance in the error is

(SFA " 8F0)Z (6FAI - _FI)Z + _ 1-k"; ,/00_ }21
Ok JAr _ O_ /A1

Replacing_--x I \-_--IAl o,c.,
according to preceding arguments, the variance

in Equation (Z),

AAV 2 becomes

(8F1 = 8F0 )z (10)

{9)

6
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However, the variance _ 6F0 )2(6FI - can be written

A 2 [ _ ] 2 A 2 2(6F1 - 6F0) = (6F1 - 8FA I) + (6FA 1 - 6F0) = (6F1 - 6FA l) +(6FA1-6F0)

(11)

since ( 6
FA 1

equals zero.

_r- 6FO ) is a constant and the mean value of ( I = 6FAI)

Combining Equations (9), (I0), and (Ii) yields the final form,

6FA 2 - 6F0 ) - 1 + 3 l_k g (6F1 = 6FAI) + _ (6FA I. 6F0 )2 (12)

%
Since the reference and actual orbits are not too dissimilar,

the error (6_FI - 6FAI) in predicting the actual orbit is equivalent

to the error in predicting the reference orbit. Consequently only

the second term on the right of Equation (12) can be considered to

vary if the actual orbit (initial error) is changed for a given obser-

ration data sample.

Using Equations (3), (4), (5), (I0),

in the delivered boost velocity becomes,

-I

= + -- 6FI

and (11), the variance

2]- 8FAI )2 + (SFA 1 SF0)

J

i, ee ,

for the actual orbit at the same instant of time are equivalent to those

of the reference orbit.

Miss Distance in Reference Plane (Miss Along)

• The re-entry miss distance in the reference plane after the

boost correction is

Here the above argument can apply also to the partial derivatives,

for a given time a/ong the reference orbit, assume the partials

7
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MAZ = MA1 UA1 + VA1

a_ AI air AI

(14)

where MA1 is the initial miss along associated with the actual return

orbit.

In a vein similar to that leading to Equation (8), we obtain

MAZ = MAI + F(6FI - ue + . _ v e (15)

where

2
MA2

F

The variance for Equation (15) can be written as follows,

[ ]2 _ _6FAI)Z= MAI + F (6FA I - 5F0 ) + (I;'2+ G) (6FI + G (6FA I

-I

(16)

A1

where

(6FA 1

I <I k2 OM A + 06 F [

AI AI

In general, the class of orbits typified by the initial error

- 6F0 ) can generate a variety of miss along errors MAI..

(18)

Miss Distance Normal to Reference Plane (Miss Across)

Here the miss distance after boost correction can be written

MCZ = MC1 + -- WA1
_,Oz l,i

(19)



O
Since consideration of a plane change by a boost correction

has been ignored, we have WAl = We.

Continuing as before, we obtain the variance

where

2
MCZ )z _ SF0)Zl= Mc_ 1 + H ( S_FI-SFA 1 +(SFA 1

-1

1 kzl aMc z z asr

A1

(z0)

(Zl)

Evaluation Procedure

The immediate objective is to determine an upper limit to the

boost velocity requiremcnt for a single midcourse correction which

permits a safe re-entry.

Since the mean value of the delivered boost

to _V, we obtain from Equation (Z),

a& F

AVD = (6FA1- 6F0) _-_-x

AV D i s equal

-1

A1

(zz)

Defining an upper limit to the boost velocity as the sum of the

mean value plus n standard deviations, we can write

AVmax. = AV D + n V (Z3)

where AV can be evaluated by means of Equations (13) and (2Z).max

Adopting a zero lift dive angle re-entry "corridor" requires

that the error (6FA z - 6F0 ) should have a standard deviation of 0. 1 °

for safe re-entry. For a given boost execution parameter k, Equation (12)

then relates the required dive angle prediction accuracy (6%F1- 5FA1)

to the initial error (61_.AI - 5F0 ).



From Apollo Notes 151 and 159 we can obtain the duration of

observation (or time to re-entry) which yields the determined accuracy

(_FI " 6FAI) for a variety of tracking situations. The time to re-entry,

or equivalently, a position on the return orbit, enables one to determine

86 F
the partial derivatives etc., so that Equation (23) can then be

8k

evaluated for a given n. Generally the value of n will be about 3 in

order to ensure a high probability (99% plus) that the computed value

of AVma x is not exceeded.

Concluding Remarks

The foregoing procedure permits a determination of the boost

velocity requirement for a given initial dive angle error. Thus

AVma x can be graphed as a function of the initial dive angle error

at the LSOI, (6FA l - 6FO }, for the parameters k (boost execution}

and tracking situation. However, the latter value is also a statistical

quantity arising from Moon-Earth injection uncertainties. • A knowledge

of these uncertainties permits one to establish an upper limit to the

error (6FA 1 - 6F0), say a 3 sigma value. This in turn, used with

the above-mentioned graph will permit a determination of (I), the

over-all boost limit for a single correction mode of operation and

(Z), the manner in which this value is affected by various tracking

situations.

10



The Bissett-Bcrman Corporation 2941 Ncbraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 180 L. S. Lustick

26 March 1964

%

SCHIVIIDT-KALMAN METHOD AND

POWERED FLI GHT

pur?ose

The purpose of this note is to identify the fundamental theorem

of the Schrnidt-I4alman method with the expression for the conditional

means of a joint multivariate normal distribution and to illustrate the

manner in which this can be applied to p.owered flight.

gernma

a°

x= r+'l, r+Z.., n

Given a joint normal distribution of variables, a i = I, 2... n

with zero mean (the covariance matrix A.. consistent with this distri-
U

bution is shown below) ; the conditional means C given

ai=l, 2...r

can be expressed as

C
a.
I= 1,2...r

= AI 2 A2 2 1

ar+l I

• I

-]'a n

Let matrix A be a covariance matrix defining a joint normal

_stribution between the variables,

zero mean)

ai=l, 2 ....n
(the variables have

A.°

ij

j=r

AIr

|_
!

|

Azl : Azz
!

i=r



0

-1
.A..

1j

j=r

!

Cll ' Ci2
!

l

i

C21 ' CZZ
i

i=r

0

variables ar+l, r+Z..

The conditional means of the variables ai=l, Z... r given the

can be obtained as shown below.
o e en

-- mC

a.
i= 1,2...r

" xCII I x CIZ

ar+l

ar+z

a
n

where C is a column vector defining the conditional means
a.

• . . 1 ,a 2. ar/ar+ 1...a ).of the distribution P (a 1 "" n

This can be put into a form considered to be the fundamental theorem

of the Schrnidt-t(alman method.

The element of the inverse of matrix A can be obtained in the

partitioned forln as indicated on the following page.

This effect is interesting in its own right as it indicates how

to find the effect of estimating nuisance parameters on the errors in

the desired parameters without inverting large order matrices,

(I)

Alexander M. Mood, Introduction to the Theory of

Statistics, p. 183.
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Cli -- (All - A12 A2_.I A21 )-I CZl = -A2,21 A21 Cli

C22 (A22 AZl All 1 A12) "1 = -= - - C12 -A 1/ A1Z C22

Substituting the preceding expressions in Equation (I), the

following is obtained

[ ' IC' ]E 11 'C = All - AIZ AZ2 AzI All AIZ , (Azz-AzI A I AIZ )
ai=l,Z•., r

Cai=l,Z••. r = IAIz - AIZ AZI All AI2
(A22 " AZI A[/'AIz) -I

-I
IAI2 = AI2 I = AI2 AZZ A22

F
. i_r. +i

i •

n

7F_.*'

Ji'
a n

. •

C

ai=l, 2... r
AI2 AZZ 1 AZZ - AIZ AZZ 1 AZI A

-I
"Ca = AI2 A22

i=l, 2... r

-i

II

ar+ 1 1

ar+2

a_+11
Iii I

-' _h J

(z)

In order to see the significance of the conditional mean, consider

the bivariate normal distribution pictured in Figure 1. The cross-hatched

Granino A. Korn, Theresa M.

for Scientists and Engineers, p. 640•

Korn, Mathematical Handbook



f

area is the probability density function for the variable X given that

the variable y = Yo"

P [(x/y=Yo]

P(x, y) _//y
0

/

/

/
c

/x

X

/

Figure I.

The mean of this distribution, Cx, is termed the conditional mean,

that is the mean of x on the condition y = Yo" The conditional mean

is obviously located at the value of x where P (x/y=yo} is a maximum

and the second momcnt of the distribution P {x/y=yo) is obviously a

minimum taken about the conditional mean.

Error Equation with Schmidt-Kalman Approach

Let:

a

m i=l, 2...r column vector representing the errors in

the state vector at time t = t based on
m

m pieces of data.

4
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A

m+lai=l, 2... r

A

m=lai=r+l,.., n

column vector representing the errors

in the state vector at time t - tin+ 1 based

on m pieces of data

A

m+l ai=l, 2. .. r = (m6m+l)(mai=l,2...

column vector representing errors in

the predicted values of the measurables

prior to the measurements at t = t
m+l

m÷l a i=r+l,r+Z...n : M (m ai=l,Z...r )

r )

%
m+l ai=l, 2... r column vector representing the errors

in the state vector at time t = tm+ 1 based

on (re+l) pieces of data (that is subsequent

to measurement at t= tin+l)

(m p) = (m ai=l,Z...r ) (mai=l,Z...r)T

(m+l P) = (m+l ai=l,Z,...r ) (m+l ai=l,Z...r )T

m+lYi r+l == ,,..n

A

m+l ai=r+l, . .. n " Ni=r+l .... n =

M (mai=l,Z.. r ) " Ni• =r+l, . .n

where:

N.

1
noise in the i-th measurable

(m+l y) error in the difference between the pre-

dicted and measured quantity at time

t = tin+ 1
5
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Using the above definitions, the elements of the A matrix can be

expressed as shown below:

^ T 6T
All = (m+l ai=l,Z,...r) (m+l ai=l,Z...r) = m6m+l (m P) m m+l

^

AI2 - (mai=l, 2... r ) (M
a. )T

m I=I,Z... r
= m6m+l (m P) M T

AZl I = [ (Yi) (yT)

-1

I 1= M (m P) M T + N i N T
1

O

Subsequent to obtaining the measurements at time t = tin+ 1

we now have a posterori the value of Yi' we select as errors in the

state vectors the conditional means of the state variables given

the Yi" Our new estimate of the state variables after the measure-

ment at t = tm+ 1 is presented below.

(Estimate of state variables after

measurements at time t = tm+l)

(Estimates of state variables prior

to measurements at t = tm+l)

-I

AI2 A2Z Yi

The error in this expression (m+l ai=l,Z...r ) is presented below

ai= =m+l 1, 2... r m+l

-I

ai=l, Z... r - AI2 AZZ Yi

Im+l P = (m+l ai=l,Z...r ) " AI2 Yi m+l ai=l,Z...r-Al2 AZZ Yi

m+l P = All - AI2 A221 M (m P) m 6mT+l

T

6



Hence:

is:

the recursion formula for the errors in the st ate variables

( [m+l P = m 6m+l -m P " m p MT M(mP

-I

) MT + Ni N'TI ]
M (mP_

6 T
m m+l

Application to Powered Flisht

This technique can be employed to determine errors during

powered flight. Care must be exercised in defining (All, AI2 and
-1

AZZ ) for this application. The use of this technique is partially

described in Apollo Note 177. A brief discussion defining A 11, A1z
-1

and AR2 for a restricted application is discussed below.

Consider a vehicle constrained to move along the coordinate

x. The vehicle has a perfect pilot who flies the vehicle according

to a predetermined acceleration versus time schedule. There is a

random error in the acceleration during any particular time interval.

The errors in acceleration during successive time intervals are

uncorrelated.

Let

t

M ..

OM 1

_X

OM
n

m

Ox

OM 1

Ok

OM
n

Ok 7



0

M.

8M

_X

8M
n

a_

P
m =E - covariance matrix in state vector

m

0 W

NNT=

variance in the acceleration

covariance matrix of noise in measurables

then,

Al I = _ mp 6T + _ W _T

Alz = 6 m P M T + _ W _T

-1 P M T + M W _T + N N T
AZ2 = M m

The recursion formula for the error$in the state variables

position and velocity can now easily be obtained as illustrated

below•

-1 [ p 6T +_ W _/T ]m+l p = All " AI2 AZZ M m

-I

8
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California

APOLLO NOTE NO. 181 G.F. Floyd
25 March 1964

EXbrook 4-3270

MSFN STATION LOCATI ON

At the present time the following stations are planned for the

USF system:

DSI F

Golds tone

Canberra

Madrid

Bermuda

Phase I

Carnarvon

Guaymas

Hawaii

Cape Kennedy

Corpus Christie

Houston

Phase II

Guam

Ascension

Antigua

3 ships

A plot of these stations on a globe shows that 11 of the 13

stations are essentially in the plane defined by an E-W launch from

Cape Kennedy, Guam and Madrid are 30 ° out of this plane, and one

of these can see the Moon 5 ° above the horizon when the sublunar

point is on this plane except for 20 ° arc South of Goldstone and

l0 ° arc in the Indian Ocean. Also the 3 DSIF sites can see the

Moon at all times along this plane and there will be two transmitters



at each of the DSIF sites, so will be taken as the transmitting

stations for the multiple station Doppler mode.

Now only one station can operate at a time in the range mode

and one station is no good for short time operations. Also the

range mode must allow for an unknown bias and then is no different

than the range change mode except for a worse o-. Thus for these two

reasons I see no point in further consideration of the ranging mode for

short time lunar operations, and suggest we restrict our attention to

the Doppler mode with one of the three DSIF sites transmitting and

all the other MSFN sites that can see, receiving.

!
/
J
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 18Z

MSFN LUNAR COVERAGE, II

H. Engel,
W. Iwata

30 March 1964

The attached figures show the number of stations from which

the Moon is more than 5 ° above the horizon for any sub-lunar point.

The stations used are those presently planned for the UFS

system, and listed in Apollo Note No. 181.

O
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Moniea. California EXbrook 4-3270

a
APOLLO NOTE NO. 183

Q

SOME COMMENTS ON THE IMPORTANCE OF AN

APPROPRIATE MEASURE OF EFFECTIVENESS FOR

THE CORRECTIVE BOOST PROBLEM

J. Hoidsworth

30 March 1964

On the return-to-earth trajectory, a critical parameter is

the re-entry dive angle. Current corrective boost philosophy seems

to indicate that the boost should be such as to correct for the observed

discrepancy between the estimated re-entry dive angle and the de-

sired re-entry dive angle where there are random uncertainties both

in the estimated position and the executed corrective boost. This

philosophy is almost tantamount to assuming that one wishes to mini-

mize the expected square discrepancy between the actual re-entry dive

angle and the desired re-entry dive angle.

The above-mentioned criterion function, i.e., mean

square discrepancy, is not the only reasonable criterion function. For

example, another criterion function which might well be more realistic

would be the probability that the actual re-entry dive angle lay within

some permissible tolerance band about the nominally desired angle.

In this latter situation, the optimal boosting program would be such

as to maximize this probability that the actual re-entry dive angle lay

within the permissible window.

Now there seems to be a fairly prevalent current fiction

that a corrective boosting doctrine which is optimal for one criterion

is also optimal for another. The purpose of this note is to dispel this

notion by constructing a simple model which can be carried to com-

pletion analytically and to show by means of closed-form expressions

that what is a good policy for one of the criteria just mentioned need

not be good for another.
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Also, we shall inquire in this overly-simplified case as

to when the optimal policies are similar or identical. Even though

the assumptions we shall make to enable us to carry out the analysis

explicitly are perhaps unrealistic physically, it is none the less true

that this simplified version does represent a limiting case and that

if the dependence of the optimality of the correction program exists

in our limiting case, then there is strong reason to expect that it

exists also in the more realistic case. Hence, since human life may

be involved, it behooves one to give some careful thought to the choice

of a measure of success or effectiveness or equivalently to an intel-

ligent pay-off of criterion function which we wish to maximize with

respect to the various decision variables at our disposal.

Analytical Formulation:

For the purpose of our mathematical treatment, it is

logically unnecessary to continue to use the physically suggestive

and picturesque term re-entry dive angle, and since our comments

apply to a somewhat wider class of decision problems, we shall give

an abstract formulation of the problem which avoids the use of these

specific terms.

Ana!ysis Leading to Maximization of Probability of Mission Success:

We assume that we are initially in some state or position

which may be characterized by some continuous real scalar quantity

x which we assume to be known without error. We also assume that

we would ideally prefer to be at some other state or position which

we may assume £o be zero without loss of generality. However, we

shall be content and consider our mission a success if our terminal

star, which we denote by a real number y, lies within some known pre-

scribed tolerance band; i.e., if -T..<y..<r where T>0. We also as-

sume that r is known. Now if we are dissatisfied with our initial

state or equivalently if Ix[> T, then we may apply one single trans-

formation upon x, which we call a corrective maneuver with the hope



that the resulting or terminal position y lies with the tolerance in-
terval.

In performing our corrective maneuver, we assume that

the actual maneuver performed deviates from the maneuver which

we command in a random manner which is known only distributionally

so that amongst other things, the terminal state y is a random quan-

tity. The first case we shall consider is where the pay-off function

G is the probability that - T..<y<_r. If we let C denote our desired

or commanded change or maneuver, we may write the following ex-

pression for G which shows the explicit dependence of G upon the

initial state x, tolerance half-width T and commanded maneuver

change C.

Thus succinctly, knowing x and x perfectly, our problem

is to choose an optimal G, say Cop t such that:

Max = Prob(ly T Ix, Copt) (z)

Now, as mentioned earlier, the actual change performed

which we denote by 6 will depart somewhat from the commanded

change C in a random fashion. Furthermore, to closely parallel the

physical situation involving auto-pilot errors, we assume that the

root mean square error in 6 is linearly proportional to the magnitude

of the commanded change C. Also, we shall assume that the statistics

of the change 6 are such that the expected value of 6 is the commanded

change C. We further, for convenience, assume that the random

departures of 6 from C are distributed according to a gaussian proba-

bility law. Thus we may write the following equation for the actually

performed maneuver 6:

6 = (I+ e)c (3)

3



where e is a dimensionless random variable whose probability
density function is:

2
1 e

f(e) = 1 e z o- z (4)
_FA-v e

e

Since the terminal position or configuration y is assumed

to be the sum of the initial position x and the executed maneuver, we

may clearly write:

y = x+ 8 (5)

y = x+ (1 + e)C (6)

From equation (6) it is easy to see that our assumptions imply that

we are able to sustain a steady course or keep a constant position

in spite of the randomness of e. We do this simply by commanding

no change, i.e., by setting C = 0.

The last stated fact allows us to immediately solve the

optimization problem for a certain singular situatior For example,

suppose that x which we know with certainty already is such that

- T _X_<T. Then clearly we should command no change; i.e., we

should take Cop t = 0 for in this case, we have y = x and:

: , : ma_G : Prob(LYI<T Ix, Copt} c_)

It is perhaps not premature to say that it is in this almost trivial

regime that the optimal correction policies corresponding to the two

aforementioned pay-off functions will differ most drastically.

4



It is important to realize that our decision variable, i.e.,

the quantity under our control with which we hope to maximize G, is

the commanded change C. Now since e has the distribution given by

equation (4), it follows that the final position or state variable y has

a gaussian probability distribution whose probability density function

is given by:

f(y) = I exp l (y - x - c)z (8)
V-57 % tcl 20-2c2

e

%

As defined earlier, we regard our mission as successful

if the terminal position does not exceed T in magnitude, thus from equa-

tion (8) and the definition of our pay-off function as being the proba-

bility of success, we may write:

__T T
21 _y-x-C) 2 dy =

I exp 02Prob (iy: _< T IX, C): _ o- Icl 20-
e e

(9)

where we have written G(C) to emphasize the dependence of the pay-

off function G on the decision variable C.

Now since we have disposed of the exceptional case where

-T_X.<T, there is no loss in generality in assuming x> T. Further-

more, if x> T> 0 and if G(C) is improved at all by choosing a C:/ 0,

then all of the canons of both mathematical and physical intuition sug-

gest that Copt <0. We shall take this to be a self-evident truth and

not bother with a rigorous demonstration of such an obvious point.

With this last thought in mind, if we maximize G by setting:

G(c)

dG
= 0_' (I0)



we easily obtain by differentiation under the integral that:

exp ZT(x -iC I) x +
= (ll)

o2C2 X-T
e

As we are now assuming that X>T, we may take logarithms

of both sides of (I I) to yield:

Z_(x -IC I) X+
= log = k (12)

o_2C2 x- T
e

where k depends only upon x and T and not upon the decision variable C.

A slight rearrangement of (12) shows that the optimal C

must satisfy:

/

ko -2 C 2
e"

+ zT Icl- ZTx = 0 (13)

from which we easily obtain:

t

2- T "1" T + 21¢o- T X
e

lc Iopt = ko_2 (14)
e

whichgives the magnitude of the optimal command of change C. But

since, as we noted earlier, X>T> 0 implies that the optimum commanded

correction cannot be positive, we obtain:

_/v2 2"r - + 2ko- T X

e (15)
C°pt = ko- 2

e

where k is given by equation (12).



From equation (15) it is worthwhile to note that the op-

timum change for one criterion-does not center the distribution of the

terminal position at the most desired location, which seems to be a

part of current dogma.

This is approximately the case, however, under certain

limiting conditions. Thus consider the case where c_, the dimension-

less auto-pilot error is very small; i. e.,

Then we have:

(16)

_/rZ+ ZkTxO_Z ( 2kx Z) I/2 ( kx°-2 )= T 1 ÷ --+--O_e _ T 1 + e (17)
e T

Substituting the approximate value of the radical as given by equation

(17) into equation (15)we obtain:

Cop t = - x (18)

which says that for limitingly small dimensionless auto-pilot error,

to maximize G{C) we should choose Cop t in such a way that the center

of the distribution of the final position is centered about zero.

However, to consider a contrary example, if

T

o- (19)e

that is the case where the auto-pilot erros are very large,

similar limiting analysis shows that we should choose

then a

Copt = 1o-
e

(20)

which is a markedly different mode of behavior than that advocated by

equation (18).

• 7
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Minimization of the Mean Square Distance Between the Actual and
Preferred Terminal Positions

We now consider a similar situation with identical ground

rules, and statistics for the auto-pilot error with one major exception.

That is, instead of attempting to maximize the probability of achiev-

ing a terminal position within some prescribed tolerance band, we

now attempt to modify our position by our corrective maneuver in such

a manner that we minimize the mean square distance between our

terminal configuration and the ideally desired zero configuration. In

other words, our new pay-off, or perhaps more properly called a cost

or penalty function, will be taken as Ey2 where E is the expected value

operator. We shall denote this cost or criterion function by _(C) to

exhibit its dependence upon the decision variable C; or more explicitly

we may write:

2
C(c) = Ey . (Zl)

Now squaring equation (6), multiplying by equation (4)

and performing an easy integration, it follows readily that _'(C) may

be more explicitly written as:

C(c) = (x+c) z + c z%z. (zz)

To compute the optimal commanded correction to minimize _(C) we

note that:

a_ 2
= 2(x+ C) + ZOo- = 0 (z3)9-5" C

, x (z4)
C°pt = 1 + o-Z

6

so that comparison with equation (15) clearly indicates that a com-

manded boost which is optimal for the first criterion function is

clearly not optimal for the second.

8



General Comments

The rather remarkable result to be gleaned from both

equations (15) and (24) is that for neither of the criterion functions

considered in this simplified case is the optimal boost the one which

on the average will reduce the undesired deviation to zero, although

most papers treating the subject make the a-fortiori commitment that

each •of their corrective boosts will be such as to reduce the apparent

discrepancy to zero.

As was initially admitted, the model we have considered

is grossly oversimplified. Two of the most presumptious assump-

tions were that there was no uncertainty in positional knowledge and

that it was possible to alter one's position by performing just one

corrective maneuver. In addition, we have for simplicity's sake

ignored the very real possibility that these efforts are coupled and

that there actually exists a trade-off between the number of corrective

maneuvers which may be performed and the certainty with which one

knows his position at any given time.

However, there is no reason to believe that the inclusion

of these other complexities will negate the validity of our basic point

regarding the correct identification of a behavioral procedure with a

given measure of effectiveness. Thus we reiterate our suggestion

for as careful a formulation of the particular optimization problem

as possible, together with a plea for a heightened awareness of the

dependence of an optimal mode of procedure on the criterion function

to be optimized.

9
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APOLLO NOTE NO. 184 L. S. Lustick

31 March 1964

COMPUTER PROGRAM FOR ESTIMATION OF

EFFECT OF NUISANCE PARAMETERS

Purpose

The purpose of this report is to establish the basis for a

computer program to evaluate the effect of nuisance parameters.

I ntroduction

There are many parameters such as the velocity of light,

gravitational constants, etc., which are required in order to de-

termine the parameters defining an orbit. These parameters are

not known exactly. The purpose of this report is to describe the

manner in which the effect of the uncertainty in these parameters

on the desired parameters can be determined.

• Method

Consider the estimation of a number of parameters ai=l, Z...n"

Let us define arbitrarily the parameters a. as the parameters
l=l, 2... r

of interest and a as the nuisance parameters. Further
i= r+l, r+2.., n

let the matrix A be the information matrix for the variables ai=l, 2... n"

This matrix is shown below.

All

A =

A21

j=r

I
I

I

I

I
I

I

I
I

L-
I

I
l

I

I

AI2

i=r

A22



Let the matrix C below be the covariance matrix for the

variables a.
1=1, 2... n

-1
C= A =

C
11 C12

CZZ

then it can be shown that

Cl I = (All _AI zAzz I AZl)-I

- -l
Czz = (Azz - AZl All I AIZ)

-Azz 1C21 = AZl CII

-I
C12 = - All AIZ C22

If we are only interested in the elements of Cll , these can be obtained

with less round-off error and in about 1/3 the machine time by using.

the fact that Cll = {All - A1Z A;_ 1 A21 }-1 instead of inverting the

larger dimensionmatrix.

Alternately one might be interested in the effect of the uncertainty

in the nuisance parameters when these are not updated with the current

2



measurements. The covariance matrix for this case can be expressed

in the form below. I/

[ ]

original covariance matrix of

nuisance parameters

Before summarizing, it is of interest to make the following

observation. Consider the case when the knowledge in the nuisance

parameters is being updated with the current observations.

Then,

• AzzlCoy (ai=l,Z...r) = (All " AI2 AZl )-I

If the effect of the nuisance parameters is considered to be small

then,

A1.11]Coy (ai=l,Z...r)

and the successive approximation to the inverse can be obtained

as follows. 2_/

o

l/ Bissett-Berman Final Report, Appendix G, dated 2 March 1964,

NASw-688, (C60-18).

2--/ R.A. Frazer, W. J. Duncan, A. R. Collar, Elementary

Matrices and Some Applications to Dynamics and Differential

Equations, p. IZ0.

3
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Coy (ai= i, 2.

O The similarity to this last expression with the case when the knowledge

of the nuisance parameters is not updated is shown below.

Nuisance Parameters

• Updated

Coy (ai=l, 2... r ) _

The difference in these expressions is

and AZ-Z1 where:

A2Z 1 =

Nuisance Parameters

Not Updated

C°V (ai=l. 2...r ) -

AIII[AII + AIZ

,_,-I

the difference between A22 '

•Covariance matrix of the nuisance parameter

(not updated with current measurements)

Covariance matrix of the nuisance parameters

(updated with current measurements)

4



Summary

To summarize given All ,

in the following quantities.

A12; A21 , and A22 ,

i

we are interested

-I
I. All =

-i
2. All

covariance matrix in desired parameters assuming

no error in the knowledge of the nuisance parameters.

All + A12 A22 A21 = covarlance matrix in

desired parameters with no updating of knowledge

in nuisance parameters.

'_2I= matrix of nuisancecovariance parameters

previous to current data.

3. (All - AI2 AZ21 A21 )-I = covariance matrix in desired parameters

with updating in nuisance parameters

from current data.

4. (Azz - AZI All I AIZ)"
I= covariance matrix in estimates of

nuisance parameters (updating with

current data).

Computer Program

The purpose of this section of the note will be to describe the

changes in our current program to calculate the quantities summarized

previously. We will take for the starting point of this discussion the

total information matrix just prior • to obtaining the covariance matrix.

Let C.. = Total Information Matrix
x2

5



where
P, N7. 1 7. aMctk,Cij = ,_ 2 aa. _a.
£=1 . cr£ k=l x 3

R = Number of measurables
m

2
o-. = Variance in measurable
£

N = Number of observations

Co o'=-

_J

M£ = .Measurable

The C.. matrix is indicated schematically below•
Ij

j 1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

12

7 8 9 .... n

All

B T

A21

....... |

I
I
I
I
I
I

131
I
I

A12

A22

I
I
I
I
!
I
!

D',
I
I
|
!

!

I
I
!

I
I
!

!

!

!

!
!

!
I

6

°.



position and velocity components at time

equal to zero

ai= 7 gravitational attraction if errors in _ are

to be considered

a.

_>7
other nuisar.ce parameters

_%re wish to calculate the follo_i::g items.

lo No error in the nuisance paralneters

%
-i.

Coy (T=0) = All is a 6 x 6 matrix

Cov (T:t) : Q(t) Cov(T:O) fiT(t)

where Q(t) is a 6 x 6 matrix corresponding

to elements i = I, 2... 6

(i)

(2)

. A i)riori data in nuisance parameters (no updating with

current data).

A. " No error in

[ i"_" -1 -1
Coy (T=0) = All 1 All + A12 A22 A21 All

----I

where A22 is input data and is the covariance

matrix corresponding to the a priori uncertainty

in the nuisance parameters.

Coy (T=t) = Q(t) Cov (T=0) QT(t)

(3)

(4)



where Q(t)= 6 x 6 matrix corresponding to

elements i = I, 2... 6

B. Error in _ to be considered

Since there is an error in FLwe must augment this matrix

before projecting the errors to future times.

(s)

CAai= 1,2,., 6 + B f_ai=7 + FAai=8, 9. ••n = ei=l, 2.., 6

= C'I Cei= , =]
Aai=1, Z...6 _ I,...6 -B"ai=7 - FAai=8,9.. n_

The cross-correlation bet\vccn Aai= 7 and the v¢ctor Aai=1, 2.... 6 can

be obtained as _hown below:

-I

(Aai= Z,Z... 6 ) (Aai=7) = - D C _3 (6)

Z
where D = o- the variance in the a priori

knowledge of

i __

Coy( T= O)Augmented=

j _

I

2

3

4

5

6

7

where

1Z 34 5 67

-i
L = -DC

D = o-z

B



QT
Cov(T=t) = Q Coy (T=O)augmented (7)

where Q = 7 x 7 matrix

3_ Error in nuisance parameters (updated with current data)

A. No error in

Cov (T=0) = (All - AI2 AZZ 1 A21 )-I (s)

Cov(T=t)
T

: Q Cov (T:0) Q (9)

where Q = 6 x 6 matrix

% Bo Error in _ to be considcrcd

Cov (T=0) = (GII - O12 OZZ 1 G21 )

where:

j=l

i= 1

2

3

4

C..= 5
Ij

6

7

8

9!

n

-1

Z 345 6 7 8 9 • . . n

II
G GI2

GZZGZI

(10)

P
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Cov (T=t) .: Q Coy (T=O) QT (11)

Q is 7 x 7 matrix

o Ability to update the nuisance parameters

Coy (T=0) = (A22 - A21 Al I AIZ )-I (IZ)

no operation with Q matrix.

Input Data

A Priori Matrix

0
..

i= 1

2

3

4

5

, z 34 5 6 7s

6

7

8

n

SII S
12

$21

!_ io Io/olo

LO_iof_.
o7olo
loiolo

•o_o!oi

• n

0

-0-

0t0 0

._..-_---_-.
oIx._-
nlOl x

10



Sij is a matrix representing the a priori knowledge of both

the orbit parameters and the nuisance parameters.

-I
where S2Z is a diagonal matrix and $22 is a diagonal

matrix with elements along the principal diagonal

that are the reciprocal of those along the diagonal

of matrix $22,

Let C.. be the total information matrix including the a priori
12

matrixS., defined previously. This is the matrix defined in the
IJ

current program Z just prior to obtaining the inverse. The C.. matrix
ij

has the following rostrictions ia_poscd on it,

Io The nuisance parameters are the elements a.
I=7,8...n"

2. If the _ variable is considered, it corresponds to a.
i=7

otherwise the order of elements for i >_7 is unimportant.

Calculation Procedure

I. From the a priSri matrix calculate A2Z.

The principal diagonal of 2 are the reciprocals of the

elements on the principal diagonal of SZZ.

2. Calculate A 1 (See Cij matrix on page 6).

If there is a Q Matrix

Calc: COVp= 1 (T=t)

from Equation (Z)

If there is no Q Matrix

-I

COVp_z(T=t)= All

ii
..

-i.
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e Effect of _ to be considered

Calc: Cov(T=O) see

Equation (5)

Is there a Q matrix?

Yes

Calc:

C°v(T=0_ug"

see page 8

C°Vp=3(T=t)

Equation (7)

No

COVp=4(T=t) =

Coy(T=0)

Am I done ?

No

Cov(T=0)

Yes

EXIT

}_Not to be considered

Calc: Coy (T=0) see

Equation (3)

Is there a Q matrix?

Yes

Covp= 5(T=t)

see Equation
(4)

No

COVp=6(T=t) =

Am 1 done ?

No

Coy(T=0) Equation (8)

Equation (i0)

Is there a Q matrix?

Yes

COVp=7(T=t)

Equation
(11)

No

Am I done ?

Is there a Q Matrix?

Yes

COVp=9(T=t)

Equation (9)

No

Coy(T=0)

Am I done ?

No

C°Vp= 11(T=0)

Equation (.IZ)

Go to EXIT

Yes

EXIT

No

Covp:12(T:0 

Equation (12)

Go to EXIT

Cov 10(T=t)=p=

Cov(T=0)

Yes

EXIT

Yes

EXIT

12
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Output

The output at most will be 4 matrices, COVp(T=t), none of which

is bigger than a 7 x 7.

COVp=l or Z
should be labeled as "zero errors in nuisance

parameters"

C°Vp=3 or 4 should be labeled as "no updating in nuisance

parameters MU considered"

C°Vp=5 or 6
should be labeled as "no updating in nuisance

parameters MU not considered"

Coy
p=7 or 8

Cov
p=9 or 10

"Nuisance parameters updated with current

data MU considered"

"Nuisance parameters updated with current

data MU not considered"

C°Vp=l I or IZ "Effect on the error in nuisance parameters"

If any of the output matrices are not printed out, an appropriate

comment of this fact should be printed out.

13



The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 185 H. Engel

6 April 1964

O

ACCURACY OF POSITION AND

VELOCITY DETERMINATI ON DURI NG BOOST, II

Apollo Note No. 177 errs in using past estimates or measures

of acceleration to determine current acceleration. We modify the

results of Note No. 177 here to correct this.

It is convenient to treatthe acceleration measurements

separately from the remaining measurements. We let P be the
n

error covariance matrix at time tn, including all measurements up

to that time except acceleration measurements at t . We denoten

the error covariancc matrix at t after the acceleration measure-
n

• is the covariance matrix of the noisements by V n Then, if O n

in these measurements, and M n is the matrix relating the state

vector and the acceleration measurablcs, we have

1 -I + NiT Qn I MVn = Pn n n

according to the rules for combination of information matrices.

Then

. n

-I

[P-ln (Mn TQn 1 Mn )-1 (Mn TQ:I Mn) + (M: Qn 1 Mn}] "1

[ n Mn)- +I ]-1

Now the state vector, x n, of position, velocity and

acceleration at t n and of accelerometer scale factor, range bias,

etc., can be decomposed into two parts, XOn andxln ,



X
n

in Which Xln includes the three components of acceleration, and XOn

all the rest.

and P matrices may be partitioned in like fashion.The M n n

:[ M 7Mn MOn In

P
n

POOn POln 1= r

Plln' however, is infinite since the acceleration error at

time tn is independent of that at tn_l, and POln and PlOn are zero

since the new acceleration error will not be correlated with the

past errors in the other elements of the state vector. Still, we

retain P1 ln' even though it is infinite, considering it for the time

• being as though it were only very large. Then

P
n

Poon 0

0 Plln

It follows that

2



V
n

• 1 n 0 On Mon

n Mon

-1

-1 T Qn 1(M_Q_ 1 o_MOn _On
--_ Mn)" ip_ l M T

L" lln lnQnlM0 n

+I

..f -1

-, MT Q_l /Poon On Mln

rPT1 M T Q-1in In n Mln + I J

0
: (Mn O;'

A11 A12
A21 A22

-1

We find the inverse of the matrix on the right above by parts.

We have

- -1
V n = {M T Qn 1 M n)

B1 1 B12 ]

]BZl B22

where

B1 1 = (All . A12 A21 A21) 1

B22 (A22 - A21 AI? AI2)

BI2 = - A;? AI2 B22

B21 = - AZZ 1 AZl:Bll

3



Now

-In M T Q-I MAZZ = I + P1 In n In

-- i+ o(_)

SO

-1 _ "1"- Pllln MTIIn Qn I MlnA22 -

= i- o(6)

Then
_-i

-1 Mi Qn 1 M1 n (I- M T O-1 Mln) p1 1 Mi On 1 Mon_
BII = ii - P00n in n In

i-I "l1= [A11 +°(6) = A I - O(6)

_ -I

- P00n On
- Mon n

[ ,= i+o(£)] : z-o(£)

Mln I-1

BI z= -At# AIZ +O(6)

V
I%

BZI - AZI A11= i +0(6)

= (IV[nT O.n I Mn )'I [ All

-Azl

-A

4



We find the inverse of M T Qn 1 M in like fashion,
n n

(MTn Qn 1 Mn)'l

n Mon On Mln

MTln Q-1n Mon MTn Qn I M1 n

D11 D12 l
D21 D22

-1

where

Then

Ell = Dll - D12 D2-21 D21

E22 = D22 - D21 Dl-11 D12

El2 =-D11 DI2 E22

E21 = - D21 D21 JEll

5



vo:I - -I
EZI A1 1 - EZZ AZI All

-Eli A 1 AIZ + El2

-EZI Al I AIZ + EZZ

+0(6)

I V00n V0 In ]
Vl0n V1 In

but V n must be symmetric, so

(E21 - E22 A21) All = - Ell A 1 AI2 + EI2

On the other hand, All depends on P00n' and E

Therefore,

El2 = 0

doe s not.
12

or

- Dll 1 DI2 E22 = 0

- and by further substitution

- D61 D1z(DZZ- DzlDJ D2_)--o.

Qn' however, is an arbitrary matrix, so either D11, DI2
m

or (Dz2 m DZ 1 D1 1 DZI) is zero. Again, since Qn is arbitrary, these

quantities may not be 0 unless M0n or Mln is zero. We know that

M1n is not zero, since the acceleration measurements are related

to the acceleration components of the state vector. Therefore, we

are led to the conclusion that

6



Mon = 0

This, in turn, invalidates practically all of our derivation,

which depends on Mon being different from zero. Returning to the

beginning, and letting Mon be zero, we have

0

-I

Plln

÷

M
In

l 0 _ 10 0
OOn I +

Jo c_-I 0 M_nQ_IM

I I 0 ]

Poon

In

and

Vn
Poon 0

T -1
0 (Mln On I Mln)

Now if Xln is the three components of acceleration and the

measurables are these same three quantities, Mln is an identity

matrix and

POOh 0

vn -
0 On

7
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Thus we have gone all around Robin Hood's barn to arrive at

a conclusion that seems immediately evident; that is, the measure-

ment of acceleration can not improve the knowledge of position, velocity,

platform tilt, and so forth, and can lead only to an estimate of

acceleration.

Next, using the covariance V we can determine the covariance
n

at tn+ 1 prior to any measurements at tn+ 1. It is (_n+l

= _T
(_n+l 6n+l,n Vn n+l,n

Now let us find Pn+l" The fundamental theorem of the Kalman-

Schmidt method is the following:

O

Theorem:

Let a and _ be two column vector random variables with

0 means and covariance matrices

.A._ = .FII = E (_ _T)

_A_ a = FZZ = E (_ T)

_J___a = FI2 = E (_ a T)

_A__ = FZl =E(a_T)=F_

then the best estimate of _ is _'_,

and

"" FZ21= FIZ

-I -I
E(_yT_=F1zFZz _ (_T) F2z F_

= FIZ FZ2 FZ2 FZ 1 FZl

= FIz.F2-21 F21 8



Now we let the error in the best estimated state vector prior

to meas.urements at tn+ 1 be _and the errors in the predicted measure-

ments be _. Denoting the error in the estimated state vector by

6Xn+ 1 (= Xn+ 1 - Xn+l), the error in the estimated measurements

_
vector by 6Yn+l, and the matrix relating the state vector and the

measurables by _in÷l ,

Yn+l = _n+1 Xn+1'

= _/n+1 _Yn+l Xn+l + nn÷1
r

we have"

6Yn+l _/_'n+l += = 6Xn+ 1 nn+ 1

in which nn+ 1 is the noise vector appearing in the measurements.

Then

_' _:¢ )T IFZ2 = E (_21n+l 6Xn+l + nn+l) (_/_'n+l 5Xn+l + nn+l

':¢ . _:' T,.2/(.nT+ + E nT= _/In+l E (SXn+l °Xn+l _ 1 (nn+l n+l )

Denoting the covariance matrix of these measurements by

we have

Also,

9
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FIZ = E (6Xn+ 1 6Yn+l T)

(*I= E 6Xn+ 1 _In+ 1

= W. (6Xn+l 6Xn+l ) 1

• IT16Xn+ 1 + nn+ 1

+O

(_n+l 'gz_nT÷1

O

and

(5_n+ 1 _n+l )T

FZl = _/(n+l (_n+l

Now the newbest estimate of Xn+ 1 is x"n+1

Xn+ I - Xn+ I = Xn+ I - Xn+ I - Best estimate of (Xn+ I

= °Xn+ I " "_

= 6Xn+ I - F12 F21

- Xn+l)

and the expected value of _n+l - Xn+l is 0.

Then,

l::'n+ 1 = E

- E

I_;,+_"_+l_c_+,-x+_T ]

[-0x" - * - ]! n+i- Flzi%21_ C_xn+1- _'12Fz2i_F

E (6x_+ I ,:, ,e , - T• °x_+P'_(°x_+iJ_ ;zzi _'Iz

I0



%
I * I -_+I- _+I-E _Xn+I(_o+i0x_+I+°o+I__2_FI_

- [ ° oT]" FI2 F21 E (7)fn+1 6Xn+ 1 + nn+l ) 6Xn+l.

" - T
+ FI2 F21 F22 F21 F12

O
_+I-F12F2__21

+F12F2_FI_

o1"

tO
Since we only want PO0, n+l we may decompose #)_n÷l according

_}/n+l = [_70, n+l _2_I,n+l]

and write

P00, n+l = _D00, n+l " {_210,n+l

(_0, n+ I (5;_00,n+ i)

_00, n+l )T (_%+I _n+l _2! T
n+l +_+i )-I

11



D Since we use only measurements of distance, direction or

rate of change of these in obtaining PO0, n+l from dPO0 ' n÷l' it follows

that Ml,n÷l is zero and

PO0, n,l,1 = (_00, n+l - (_o,n+leO0,n÷I_T¢%,n÷1_oo.o+__, o+_+&+_-

(_'0,n÷ 1 _00, n÷ 1)

in which

6)00, n÷I- _O0, n Poo, n_To, n ÷ _IZ, n On _T,n

O

These results should now be consistent with those of Note 180,

differing only in form because of differences in notation.

12
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 186 H. Dale/H. Engel/

G. Hempstead

6 April 1964

%

DIRECTIONS FOR USE OF ERROII ANALYSIS PROGRAM

Introduction

The Bissett-Berman Orbit Error Analysis Program provides a

means for estimating the error covariance matrix of the estimates of

position and velocity of a vehicle in orbit about the Earth or Moon on

the basis of observations from a nunaber of sources. The analysis

upon which the program is based has been reported in previous Bissett-

Berrnan Apollo Notes and in the Bissett-13erman Report, "Capabilities

of MSFN for Apollo Guidance and Navigation . "

The purpose of the present note is to explain how to use the

program. Following this introduction, the capabilities of the program

are described, and the data that must be provided as inputs are indica-

ted. Finally, instructions for actual entry of data and running of the

program are presented.

program Capabilities

The program has a number of capabilities in addition to those

sketched so very briefly in the introduction. These additional capa-

bilities are described in this section. In addition, some further capa-

bilities may be wrung from the existing program with a little ingenuity,

and some of these are also indicated here.

The program is divided into two par,ts, called Program A and

Program B. Program A computes the partials of the measurables

with respect to the orbit parameters from a single tracking station

on the basis of assumed values of physical constants and orbit

parameters. Program B combines the results of Program A with

data from other sources to determine the error cov_riance matrix

of the orbit parameters and any other parameters to be



estimated on the basis of the measurements used.

Program A may be used for a vehicle in circular, elliptic or

hyperbolic orbits about the Earth or Moon, with observations from a

station on the rotating Earth, a vehicle in circular orbit about the

Earth or Moon, or a station on the Moon. The measurables may be

range, range rate or angles. The outputs of Program A are informa-

tion matrices corresponding to measurables with a variance of unity.

The information matrices may either be 7 x 7, corresponding to the

six orbit parameters a 1.... , a 6 and a fixed bias in the measurable, or

else they may be 13 x 13, corresponding to the seven quantities already

mentioned plus the following: three components of station location, speed of

light, gravitational constant, and clock error rate. The 7 x 7 output should

be called for if quantities in the larger matrix will not be used, since

this will reduce computing time. Another output of Program A is Q

matrices that are used in computing uncertainties in future values of

position and velocity. The last output is the central angle about its

orbital focus that the vehicle passes through from that time selected as

time zero until the time corresponding to that of the corresponding Q

matrix output.

.Inputs for program A

The inputs to Program A are the nominal values of the physical

constants and orbit parameters. An input data sheet for program A is

attached as Figure I. The units employed are meters, seconds, and

degrees, with the exception of tirn__e,which is specified in minutes for

simpler comprehension.

_'e shall consider the entries on the input data sheet in order.

The data Set number and station name are used to identify these

computations and in obtaining the results of these Computations from the

magnetic tape on which they are stored for use in Program B. Data

sets must be computed in the order in which they are numbered so that

data sets which appear on the storage tape are in order of increasing

data set numbers and hence can be accessed.



O Station:

01

O2-

O3

04

O5

O6

O7

O8

O9

10

Ii

12
13

14

15

18

19

20

z,
Z2

25

26

16

23

24

27

8

29

A1

A4

A5

GAM ID

BETA

XI

ETA

ZETA

LAMBDA

A LPI-IA

OMEGA E

OMEGA M

RHO E

RHO M

MU

BIG L

SMA L

SD IND

S IND

PS I IND

PS 2 IND

PVW IND

TJ

O IND

QF

TI (initial)

TI (interval)

DIMENSIONS

m

m/sec

m/sec

deg

deg

deg

deg

deg

deg

rad/sec

rad/sec

m

m

m3/sec 2

deg

deg

rain

rain

rain

rain

II If

I! I!

If 1, x-y mount

Initial orbit radius

" " radial velocity

" " tangent velocity

+ 1 if IYl<[, 1 otherwise
Inclination of Earth-Moon orbit to Equator

Euler angles relating x' y' z'

 coordinatesto
'_coordinates

Station latitude

" longitude

Earth angular rate

Earth-Moon angular rate

Radius of Earth

Earth-Moon distance

Gravitational constant

Latitude of sublunar point at T = 0

Longitude of sublunar point at T = 0

If l,calculate information for R , otherwise 0

" - " i% , ,, ,,

" 41 ' " " "

" _2 ' " "

Maximum times of observation

If 1, calculate Q for all TJ, otherwise 0

Value of time for which other Q wanted

Time of first observation

Interval between observations

Desired size of inf. matrix

O
REMARKS:

Figure 1. Example Input Data Sheet for Program A



A 1 is the radial distance of the vehicle at time zero from the

center of the body about which it is orbiting. A 4 is the radial component

of velocity at time zero, and Asis the tangential component of velo-

city at time zero.

"Gamma Indicator 'f is an input which helps describe the quadrant

of N. Gamma Indicator should be entered as + 1 if [y I is less than 90 °.

The following sketch can be used to better visualize y which is the angle

measured by a right-hand rotation about _ from the sub-lunar point at time

zero to the declining node of the Moon's orbit about the Earth. Also seen in the

sketch is BETA , the input describing the inclination of the Earth-Moon

orbit to the equator of the Earth.

z f Descending Node
• Z

/ GAM ID°
" - 1

Point

Z ti,s q-''''- /
•

Line of
Axes Nodes

GAM ID.
=+ 1

GAM ID.
=+1

GAM ID.
" - 1

Sketch Describing GAM ID. and BETA

$
XI, ETA, and ZETA are inputs which describe the orbital plane

and initial position (T = 0) of the tracked body. They are Euler angles

which are again best described by a sketch:

4



y'

"Z'

line of nodes

vehicle {T= 0)

N

Y

XI rotates the line of nodes out of the x(Earth-Moon line at T= 0) axis.

ETA is the inclination of the vehicular orbit plane to the_', _ plane, and

ZETA describes the initial position of the vehicle and thus the set of co-

ordinates: x', y', z'.

LAMBDA and ALPHA are the latitude and longitude of the track-

ing station in Earth coordinates. LAMBDA is entered as a positive

quantity North of the Earth's Equator, while ALPHA is positive measured

Eastward from the prime-meridian. It is of interest here to note that

if a plurality of stations track the vehicle during the same time, •then

a Program A must be run for each station. However, the only dif-

ference between the inputs of each station may well be LAMBDA and

ALPHA.

OMEGA E is the Earth's angular rate and is entered as

• 729116 x 10 -4 tad. /see. This input allows the tracking station to be

correctly described as the Earth rotates.

OMEGA M is the Earth-Moon angular rate and is entered as

• 2669 x 10 -5 rad. /sec.



/

RHO E is the radius of the Earth (. 63781 x 107 m) and is used to

describe the position of the tracking station in x, y, z coordinates.

RHO M is the Earth-Moon distance which is entered as

• 385 x 109 m.

MU is the gravitational constant of the body attracting the vehicle.

For Lunar orbits the value entered is . 4896 x 1013 3/see2m , while for

Earth orbits, which will be described later, the value entered is

m 3 Z• 399689 x 1015 /sec.

BIG L and SMA L are the latitude and longitude, respectively,

of the sub-lunar point at T = 0. In conjunction with GAM ID, BETA,

and OMEGA M they describe the orbit of the Moon about the Earth•

BIG L is measured as positive North from the Earth's equator and SMA L

is measured positive East from the prime-meridian.

SD IND., S IND., PS I_IND., and PS 2 IND. are all input indica-

tors which command the type of information matrices to be calculated.

If SD IND. is entered as + l, an fnformation matrix will be cQmputed

corresponding to range-rate measurements, while a zero input will delete

this computation. S. IND. similarly commands a range information

matrix. PSI and PS 2 are used to command the computation of informa-

tion matrices corresponding to angular measure,nents. An entity of+l

for the PV_% r IND. indicates that the angular measurements are taken

from an x-y mount ; an entry of 0 indicates that the angle measurements

are about two axes normal to the line of sight. A more detailed descrip-

tion of x-y mount measurements is given in Appendix Eef The Bissett-

Berman report, "Capabilities of MSFN for Apollo Guidance and Navigation. "

TJ is a multiple entry which commands various maximum ob-

servation times. Thus an information matrix will be computed for each

T3 entered. Since it is often of interest to see how the estimate of the

vehicles orbit parameters changes with the observation time, space is

provided for multiple TJ entries. The Q IND. is used (+ I) to indicate

6
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that O matrices are to be calculated for each TJ. As an example, if

we wish to know the estimates of orbit parameter errors at 5, 10, 20,

and 40 minutes after the initiation of tracking, then these times should

be entered as TJ's. Then if it is desired to have the covariance matrix

of position and velocity errors at these times rather than the reference,

T = 0, it is necessary to have Q matrices for each TJ. Thus a + 1 should

be entered for QIND. If it is not necessary to have covariance matrices

expressed at the end of each TJ, then computer time will be saved by

entering a zero for Q IND.

Two restrictions are placed on the TJ's entered. First, they must

be equal to calculated observation times, as specified by TI (initial) and

TI (interval). Second, they must be entered in the order of increasing

time.

In many cases it will be of interest to compute the covariance

matrix at some time different from the termination of tracking from a

particular station. For example the covariancQ matrix at periapsis,

apoapsis, rendezvous, etc., may be obtained through the use of a Q

matrix. In this case the time of interest (measured from T = O) should

be entered at OF. If more than one station (Program A) is to be used

with a particular vehicle, only one station need contain a QF entry since

the Q matrix so calculated depends only on the vehicle orbit parameters

and time and not on the station location.

TI (initial) is the entry which determines the first observation

for a particular station while TI (interval) determines the time between

observations. TI (initial) is seldom zero since, even if tracking starts

at T = 0, the first observation is accomplished after one interval of

tracking. In many cases stations start tracking much later than T = 0

because of visibility problems. This is particularly true of low Earth

orbits.

At this point the trade off between the number of uncorrelated

measurements and the variance in each measurement is pertinent. Since

the program format has room for only 299 observations per station, it

is often necessary to con/press the actual measurements taken and to

compensate for the reduced observations by decreasing the one-shot

error in the measurable, o--, used in Program B. The following formula

may be used.
7



cr used in P_rog: B A/N used in Prog. A

cr actual = _ ' N actual
; N = total number

of observations

Thus, if 10 minutes of tracking with one-second intervals are used, 600

observations are necessary. Since the above formula is good for more

than about five observations (used_,computer time may be saved by

using only six observations without degrading the results appreciably.

But then in Program B the cr of the observable should be multiplied by

a factor of _/6/600 = . 1 to compensate for the fewer observations. In

order to decrease the number of observations from 600 to six, TI

(interval) should be changed from . 01666 rain. to 1. 666 rain. and TI

(initial) should also be changed from . 01666 rain. to 1. 666 rain.

The last input is the required dimension of the requested informa-

tion matrices, either 7 x 7 or 13 x 13, as discussed previously.

Output of Program A

The first output of Program A is a list of the inputs. Following

this are the various Q matrices each titled with the heading "Q Matrix"

followed by the data set number and the time to which the Q matrix

corresponds. The dimension of the Q matrix is the same as the input

command; however, only significant terms are printed out. If at some

future time an attempt is made at multiplying a 6 x 6 Q matrix by a

larger information or covariance matr ix_ then "ones" are automatically

assumed to be in the remaining diagonal elements and zeros are assumed

elsewhere. With a 13 x 13 request as an input, the following output is

printed:
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8x I 8x I 8x I 8x I 8x I 8x I

c2

_3

i
I

I

"6_.1

• • • • • 0 0 0 0

.... 0 0 0 0

..... 0 0 0 0

I @x 6

0

0 0 0 0

0 0 0 0

8x I

8x 4

o

0

0

0

0

0

1 0 0 0 0 0 0

0 1 0 0 0 0

0 C 1 0 0 0

0 0 0 1 0 0

0 0 0 0 I 0

0 0 0 0 0 1 0
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where the x's are the orbit parameters at the future time (time of the

Q matrix calculation) and the a's are the orbit parameters at T= 0.

The last row and column is often not printed out since it would be filled

in automatically as described above. The seventh column derivatives

are with respect to the bias in the measurable. The eighth, ninth,

and tenth columns are with respect to station location errors: x", y",

and z". The eleventh column derivatives are with respect to clock rate

errors. Non-zero derivatives off the main diagonal after column six
/

appear in the twelfth column and are with respect to changes in the

gravitational constant. This is true since the gravitational constant

and the A1 through A6 are the only parameters which affect the dynamics

of the orbit.

After each O matrix there is a printout of SIN (THETA) and COS

(THETA) where THETA is the _entral angle subtended by the vehicle from

T = 0 to the time corresponding to the Q matrix.

The next printout is the information matrix corresponding to

range-rate measurements. This matrix has the same dimensions as the

input requirement. The title of the matrix is the name of the tracking

• station, the data set number, the term "R Rate" to indicate that it is an

information matrix corresponding to range-rate, and finally the time

at the termination of tracking (TJ). One of these matrices will exist

for each TJ input, and if none exist, due to a zero input for S D IND.,

then a comment to that effect will appear.

Essentially the same sort of thing is repeated for Range, Angle 1,

and Angle 2.

The terms of the information matrices are

N

8M (t k) 8M (tk)_a. " aa.
1 j

k=l
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where M (tk) is the value of the measurable at t k and N is the total

number of increments taken, a. or a..are the orbit parameters A1

through A6 followed in order by the bias, the station location errors

(x", y", z"), the speed of light, the gravitational constant, and finally

the error in the clock rate.

Inputs to Prggram B

The basic task of Program B is to add information matrices from

one or more sources (Program A or a priori sources) "weighted separately

by known variances in each measurable, and finally to invert the total

to form a covariance matrix. The resulting inverted matrix is an out-

put referenced to T= 0. Also printed out is a similar" output referenced

to a later time. The reason for separate programs, A and B; is now

clearly seen to be the fact that many outputs of Program A may be used

in various combinations in Program B.

Figure 2 is a sample Input Data Sheet for Program B. The in-

puts are explained here in order.

The Data Set Number is similar to that of Program A. All Data

Set numbers are consecutive and no distinction is made between Programs

A and lB. The results of Program I3 are logged on tape and the Data

Set number is used for future retrieval. This will be discussed later in

more detail. The next input is the Case Number. Case Numbers are

consecutive starting with "one" for each Data Set. Each Case Number

designates a covariance matrix. "W'ithin a Case Number might be many

stations (results of various Program A's), but all of the input data within

a Case Number is combined into a total matrix which is inverted and

printed out.

In Figure Z the first example shown (Case I) uses three track-

ing stations. Each tracking station is retrieved from tape by calling

out its Data Set number) the appropriate tracking duration (TJ) within

t

11



O Station: Program B

Data Set[O I 1 ]0 [ 11

Case Data Set

Number (4 digits)

l 0054

0054

Old Case No.

or TJ

l0

Measur-
able

R

O-

,6 ,

.58.05 Q

0055 I0 R .6

. 0056 l0 R .6

0093 A

2 0054 20 R ,6

0054

0055

0056

Q

R

R

58.05

20

2O

0093 A

3 0082 1 P

0085 A

QT15.830038

,6

.6

Bias Indicator

B/7

BI8 x"/9 v"/1o z,,111

B/I2 x"/13 y"/14 z"/l

B/7

B/8 x"/9 y"/10 z"/ll

B/IZ x"/]3 y"/I4 z"ll _

Remarks:

@
Figure 2, Example Input Data Sheet for Program B

. . IZ



that Data Set and the kind of measurable. Thus, in the example, the first

tracking station {Data Set 0054) tracked until 10 minutes. The form of

tracking is called out by the input, "Measurable. " Since Program A

handles range, range-rate, and two angles, these must be differentiated

in the input to Program B, Thus under Measurgble might appear: R,

R' _I or _g" It goes without explanation that any combination of TO" and

Measurable called out must exist in Program A.

The next input is the o-that should be associated with a particu-

lar measurable. Here the units are R in meters, R in meters/sec.)

and 61 or 6 z in radians. In the example shown the first station {Data

Set 0054) is measuring range with a standard deviation of 0.6 meters

per sighting.

The Bias Indicator input handles bias errors in the measurable

station location errors, etc. A separate row and column of the total in-

formation matrix must be used for each bias in a measurable from each

station for each component of station location error from each station,

for each clock rate error, and so on. In the example shown three stations

are tracking in range, anda bias error is assumed to exist in range for

each station. The first station location {Data Set 0054) is assumed to be

known exactly, while the second and third are assumed to have station

location errors in all three components (x'_, y", and z"). Thus the ap-

propriate Bias Indicator input for the first station is B/7. This indicates

that the seventh row and column of the total information matrix is confined

to information regarding the bias error in the measurable {range) from

the first station. It should be rernembered that the first 6 x 6 elements of

the total information matrix are taken upwith the parameters of the orbit,

and thus all other parameters to be estimated {biases and station location

errors) must start with the seventh row and column. In the first example,

the second station location is not known perfectly, and there exists a bias

in the measurable; thus the Bias Indicator entry is B/8, x"/9, y"/10, z"/ll.

The size of the covariance matrix is determined by these entries. In Data

Set 0101 Case I, the covariance matrix is 15 x 15.

13



Two other inputs are shown in the first case. A Q matrix is

called out as a measurable for the first station. Since more than one

Q matrix might exist within Data Set 0054, the time of the Q matrix,

in this case 58.05 minutes, is entered under TJ. This input allows the

product Q(TI)COv(T= 0) Q_f(TI) to be formed where Cov(T= 0) is the in-

verse of the total information matrix. The second input is an a priori

information matrix. This matrix is denoted by a Data Set number and

an "A" in the measurable input. It differs from other information

matrices in that it already contains an assumed o-. That is,while other

information matrices have unity assumed variance and must be multi-
7

plied by some o- , the a priori matrix is simply added to the total in-

formation matrix as is.

Figure 3 shows an input data sheet for a priori inputs. Only the non-

zero elements are called out: All , AI2 ,..., etc. Any element which

is not called out is assumed to be zero. For the type of program ex-

plained in the above example, each term is an element of a matrix of

the form

A = [Pijcrio-.]-Ij

.th
where o:. and o': are the a priori standard deviations of the i TM and j

1 j

parameters and Pij is the a priori known correlation between terms.

It should be remembered that the a priori information may contain terms

involving biases and station location errors. Thus, if a station location

(say Data Set 0055) is known to: _x, I= 10 meters, O-y,,= 65 meters, and

= 70 meters, then the inverse of the squares of these quantitiesO-z,,

should be entered as a priori elements; in this case in elements A9, 9'

A10, 10' andAll, 11"

The second case shown in Figure Z shows how easily results may

be obtained for various tracking times. In this case, only the TJs of

the tracking stations have been changed from I0 minutes to 20 minutes.

14



Station: A priori

_taSotlIII]:

All =

A22 =

A33 =

_- A44 =

A55 =

A66

etc.

REMARKS:

Figure 3. Example A priori Input Data Sheet
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The output of Program B which is stored on tape is O[ ]" 1QT

where the term inside of the brackets is the sum of all of the input

information and a priori matrices. " This stored data may, in turn,

be used as an input to a following Program B. This allows tracking

data on either side of a boost to be optimally combined. An example

of this is shown in Case No. 3 of Figure 2. Here the result of track-

ing prior to a boost is recalled from a previous Program B by its Data

Set Number, and old Case No. and a "P" in the measurable input to in-

dicate that the input is the result of a previous Program B. This input

is in the form of a covariance matrix and thus the a priori matrix which

is added to it (Data Set 0085) must be of the same form and should cor-

respond to the errors caused by boost uncertainty. The result of Program B is

always of the form Q[ ]-1QT and thus the output of the above example

will be an information matrix. In this example instead of entering a

Q matrix, the last input, Data Set 0038, is QT indicating the transpose

of the Q matrix from Data Set 0038 (at 15.83 minutes). This has the

effect of returning the reference from the time of the output of Data

Set 0082 to zero time. The output is QT[ ]-IQinstead of Q[ ]-IQT.

Thus the resulting output of Case 3 is an information matrix just subsequent

to a boost, but referenced to time zero. This result may be used as

a priori information in a latter Program B which includes tracking

after the boost. It is not possible to reference a data set within the data set

being computed; thus three different data sets are required to track, boost,

and track again.

If no Q matrix is specified in Program B, the output is simply the

inverse of the weighted sum of the input matrices. _
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Output of Program B

The first output of Program B is a prlnt-out of the input. A

sample of this for the example Data Input Sheet (Figure 2) is shown

below.

Data Set 101 Case 5 6 x 6

Data Set 54 Range Time = 10. SIGMA = . 6

Data Set 54 Q Time = 58.05

Data Set 55 Range Time = 10. SIGMA = .6

Data Set 56 Range Time = 10. SIGMA = .6

Data Set 93 A Time = - 0.

BI XS YS ZS VL GR CL

7 0 0 0 0 0 0

8 9 10 11 0

12 13 -14 15 0

0 0 0 0 0

0

0

0

0

0

0

0

The first line gives the Data Set and Case Number. Also on the

first line are descriptions of what is put into each row and column of the

total information matrix before inversion. The first 6 x 6 elements of

each contributing Data Set are followed by the seventh column, BI, in-

dicating the bias information in the measurable. Following this is in-

formation regarding the three components of station location error in

columns 8, 9, and 10. Column ll is reserved for the velocity of light

information (VL), followed by gravitational constant (GR) in column 12

and clock rate error (CL) in column 13.

After skipping a line, all of the Data Set inputs follow, iThe first

three read as follows: "Old Data Set 0054 is Range information with

Tff = I0 minutes. The range sigma is . 6 meters. The first 6 x 6

elements are to be added directly to their corresponding elements in the

totllinformation matrix. The range bias informatien in Data Set 0054

column 7 is to be added to the total information matrix in column 7. Old

Data Set 0054 has a Q matrixto be used which is calculated for 58.05

minutes after zero time. The _'.-"signifies that only the first 6 x 6 elements

of this matrix are to be retained. Old Data Set 005--5 :isa Range matrix

also with TJ= I0 minutes. Its bias terms (column 7) are to be placed in

the eighth column of the total matrix and its 8th, 9th, and 10th columns,

17



corresponding to x", y", and z" station location errors, are to be

placed in the 9th, 10th and llth columns of the total information matrix."

Following the printout of the input data a few lines are skipped

and the total matrix prior to inversion is printed. Following this a

check of the matrix inversion is printed. This is C C-I and should ideally

have "ones" down the main diagonal and zeros elsewhere.

Next appears the inverse itself. This is the inverse of the weighted

sum of the information matrices, including a priori data.

The next matrix printed out is Q[ ]-IQT which is usually the

covariance matrix at some particular time of interest (the time cor-

responding tO the Q matrix). This last matrix may be an information matrix

when the inputs to Program B are "P's. "

Following the Q Coy QT matrix is the Rendezvous Miss, which

is nothing more than "

RZNDMISS = JPll+ PZZ÷ P33J*Iz

where the IZ_s are terms of the Q Coy QT matrix. This is a good esti-

mate of the total positional uncertainty at the time of the Q matrix.

Next the square roots of the diagonal terms of Q Cov QT are

tabulated.

Finally there is a correlation matrix in which all diagonal

terms arc, of course, unity and the off-diagonal terms are Pij, the cor-
.th .th

relation between the errors in the i and j parameters.

Sample Problem and l_esults

Three Stations Tracking During an Earth Parkin_ Orbit

This problem consists of three stations - Bermuda, Carnarvon,

and Guaymas - each tracking a vehicle in a 200 kilometer circular

Earth orb{t. The vehicle is launohed Eastward from Cape Kennedy,

and burnout (and the initiation of tracking, T = 0) occurs at 27 °
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North Latitude and 60. 5 ° West Longitude. The orbit is inclined to the

Equator by 28. 5 degrees. For the particular case presented herein,

each radar has identical characteristics and tracks in range and x-y

angles with the following precision for one second uncorrelated samples.

a 1% = 15 meters

61 = .8 x 10 -3 radians

a 62 = . 8 x 10 -3 radians

No biases are assumed in any of these measurables, but each station

is assumed to be located to the following a priori precision:

x" = 10 meters _ A priori uncertainty for
y" - z" := 65. 4 meters each station

where x" is perpendicular to the Earth's axis of rotation and z" is

North. The start of tracking for the Bermuda Station is atT= 0 (i. e.

booster burnout) and the 5° horizon terminates tracking at 0. 85 rain.

Carnarvon starts tracking at T= 42.60 minutes and stops at T= 48.0Z

minutes. Guaymas times are correspondingly 78.88 and 84. 38 minutes.

Since three stations exist, three Program A's must be used;

however, for simplicity only the Guaymas Station will be shown. The

Data Set Numbers used for the three Program A's are:

Bermuda = Data Set 0152

Carnarvon = Data Set 0154

Guaymas = Data Set 0160

The input data sheet for the Guaymas Station is shown below:
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Station: Guaymas

Data Set:

01

02

03

O4

O5

O6

07

08.

09

I0

II

iz

13

14

15

18

19

20

21

22

25

16

23

24

27

A1

A4

A5
,, , ,,,

GAM ID

BETA

XI

, ETA

ZETA

LA MB DA

A LPI-LA

OMEGA E

OMEGA M

RHO E

RHO M

MU

BIG L

PS I IND I.

PS Z IND I.

Pvw IND ....

SMA L

SD IND

-S IND"

TJ

5 INo
QF

TI (initial)

TI (interval)

DIMENSIONS

• 65781 x 107 m

O. m/sec

• 7795x 104 m/sec
, , , , , ,

I•

• 285 x 102 deg

0. deg

O. deg

O. deg

• . 2806 x 102 deg

-.1iogx lo deg
• 729116 x 10 -4 rad/sec

0. tad/see

• 63781 x 107 rn

rn

3
m /sec z

O#

• 399689 x I0

• z7 x lO_

.605 x I02

I.

i,

.8438 x 102

1.

Oe

.7938 x I0 z

• 5o

15

13

deg

deg

rain

rain

rain

rain

I| II

II If

|1 ||

, x-y mount.

Initial orbit radius

" " radial velocity

" " tangent velocity

+ i if hi< z-' " 1 otherwise

Inclination of Earth-Moon orbit to Equator

fEuler angles relating x' y' z'

?_coordinates to x y z

ii

J _.coordinates

Station latitude

" longitude

Earth angular rate

Earth-Moon angular rate

Radius of Earth

Earth-Moon distance

Gravitational cons rant

Latitude of sublunar point at T = 0

Longitude of sublunar point at T = 0

If I, calculate information for P_

" R

,, , 61

" 6z

Maximum times of observation

If i, calculate Q for all TJ

Values of time for which other Q wanted

Time of first observation

Interval between observltions

Desired size of inf. anti:ix

REMARKS:

NOTE:

Earth Orbit

1
Adjust o-for _ minute interval (I/'Vr_)
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Since Program A computes as though a vehicle were in orbit

about the Moon which in turn is in a circular orbit about the body con-

taining the tracking stations (Earth), it is necessary to make the lunar

coordinates coincide with the Earth-centered inertial coordinates for

this problem. This is done simply by setting the Earth-Moon distance

and angular rate equal to zero. By equating the inclination of the

Earth-Moon orbit to that of the vehicle's orbit (_ = 28. 5° ) and by plac-

ing the sub-lunar point at the location of the vehicle at T = 0 (BIG L,

SMA L) and by setting XI, ETA, and ZETA equal to zero, it is possible

to convert the program to one which handles Earth orbital vehicles.

The dynamic parameters AI, A4, and A5 are not affected . GAM ID

is "i" since N is less than 90 ° . All information matrices are to be used

during some cases (although only R, 61 and 62 are used in this else)

and thus SD, S, PS 1 and PS Z indicators are set equal to "I." An x-y

mount is assumed and thus PVW IND. = I. The time interval is to be

lengthened from i. 0 second to 6. 5 minutes to save computer time.

Thus TI (interval) is set equal to 0.5 rain. and in Progr_,m B the measur-

able, _R, must be changed from 15 meters to 2. 74 meters (-- 15"_/I/30)

and o-6 must be changed from 8 x 10 -4 radians to I. 4, -4,io x I0 radians

(--s lO-4-,M  1.

The initial measurement is taken one interval after the initiation of

tracking (78. 88 rain.) and thus TI (initial) is set equal to 79..38 minutes.

Since station location errors and errors in other parameters may be

of interest, a 13 x 13 information matrix is commanded.

The next input is an a priori information matrix used for the

initial station location variances before tracking. In Program B the

x", y", z" station location errors are parameters which will be esti-

mated in the 7th, 8th, and 9th column and row for the first station

(Bermuda) and in the 10th, llth, and IZth positions for the second

station, and in the 13th, 14th and 15th positions for the third station.

Assuming a priori knowledge of the diagonal elements will give:
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A7, 7 = AI0, I0 = AI3, 13 = I/I02

A8, 8 = All, II = AI4, 14 = 1/65. 42

A9,9 = AIZ, IZ = AI5, 15 = 1/65.42

However the format for an a priori input can only handle a

13 x 13 matrix. Thus only A7,7 through A13 ' 13 are used as inputs,

and a transfer is made in Program Bby using two references to Data Set 0161.

Program B, Data Set 0165, Case 4 combines the three stations

(Data Sets 015Z, 0154, 0160) with the a priori information matrix (Data

Set 0161). The measurables are range and two angles with the same

radar accuracies from each station. The actual inputs for the various

cr's have been weighted due to varying compression of the data samples

taken, as explained previously. In the "Bias Indicator" column the

first three lines state that the data regarding the x", y", z" components

of the first station location errors are to be added and placed in the

seventh, eighth, and ninth row and column of the total information

matrix. The data regarding the other two stations is handled in a simi-

lar manner. The Q matrix from Data Set 0160 is to be reduced to a

6 x 6 (indicated by the :::), and the first a priori matrix, Data Set 0161,

is to be left alone, as is indicated by no entry in the Bias Indicator

column. Actually, the desired a priori matrix is a 15 x I5, while the

largest input allowable by the format is 13 x 13. This is handled by a

simple transfer. Thus since the 8th and 9th diagonal terms of the de-

rived a priori matrix are the same as the 14th and 15th, the Data Set

is called in again and through the use of the bias indicator column, the

appropriate terms are transferred.

This completes the required inputs for this first sample problem.

The following is a discussion of facshniles of the actual computer out-

put (see Appendix A).
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Station: Program B

Case Data Set Old Case No Measur-
Number or TJ able(4 digits)

4 0152 0.85

0i60

48. 02

84. 38

I R

_2

R

I

_2
R

_2

Q

O-

4.34

_z}
2.31 x I0

4
2. 31 x 10

2.76"

1.47x l0
_4

1.47x l0

...... -4

2.74

I. 46 x 10 -4

Bias Indicator

x"/7 y"/8 z"/9

same

same

x"/10 y"lll z"l12

same

same

x"/13 y"/14 z"/15

same

I. 46 x lO -4 same

i

016 ! A

A x"/14 y"/15

The first output of Program A is the input data (see page A-l) followed

• by the Q matrix at 84. 38 minutes (see page A-Z). Immediately after the Q

matrix printout are sin 0 and cos 0 where 0 is the central angle traveled

by the vehicle between T = 0 and T= 84. 38 minutes, The information

matrices for R, I_, t61 and 62 measurables follow on pages A-3 through

A-6.

The a priori information matrix is printed out in its order (Data

Set No. 0161 follows 0160 which was Program A for Guaymas). Only the

non-zero terms are printed out. (page A-7).

The printout for Program B is shown starting on page A-8 with

the input data. Following this is the total matrix prior to inversion,

page A-9. UnfortunatelN this facsimile did not quite fit the page. The
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checkout of the inversion is shown on page A-10, and it can be seen

that the inversion was quite accurate since the largest off-diagonal

element is on the order of about i0 _7. The inverse or covariance

matrix at T= 0 is on page A-If, and the covariance matrix at T-" 84.38

minutes (at the termination of tracking over Guaymas) is on page A-IZ.

The RMS velocity at T = 84. 38 minutes is the square root

of the fourth plus fifth plus sixth diagonal terms (0.0365 meters/see)

while the RMS uncertainty in position is the square root of the first plus

second plus third diagonal terms and is printed out on page A-13 as

REND MISS. Also on A-13 is the correlation matrix.

Instructions for Preparation of Data and Pro_raln Execution

General :

The program is set up to run on an IBM 7090 or 7094, under a

FORTRAN II monitor system. Core storage must be at least 3Z, 768

words. Magnetic tape A-Z is the standard input tape, the standard out-

put tape is A-3 (for subsequent listing off-line), and tape A-5 is used

to store the results of Programs A and B for subsequent use, if

desired. For a machine run, it is necessary only to prepare an input

deck of cards according to the specifications below and place this deck

following the program deck and a FOI_TFiAN "DATA" card.

Programs A and B may be employed in any sequence, subject

only to the restriction that all data accessed using Program B must

have previously been stored on tape A-5 (in either Program A or B).

Program A Input Data Cards:

Program A is composed of two parts. One calculates the partials

of the measurables and stores these information matrices on magnetic

tape. The other is used to store a priori data on magnetic tape.

Figure 4 shows examples of input for each part, and references in the

following paragraphs will be to that figure.
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Figure. 4

Sample Card Input Deck for Program A
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Program A - Partials:

The first card must contain PROGRAM A in columns 1 - 9.

Columns II - 12 may be blank or contain 01 (see cards (a)). If blank,

the results of these calculations will be stored on tape following the

results of any previous data sets already on the tape. If 01, the tape

will be rewound and the results stored as the first block(s). Thus,

an 01 must be used when (I) data is to be stored on the tape for the

first time, or (2) it is desired to discard all previous results and start a

new tape. The second card contains the station name in columns I - 8 and

the data set in columns 9 - 12 (see cards (b)). Following this card are the input

quantities such as orbit parameters and physical constants (see cards (c)),

one input per card. Columns i - 2 contain the integer identifying the

input quantity, and columns 7 - 20 contain the quantity itself, in floating

point exponential format (+ x. xxxxxxxE+xx). Read in of the input

parameters is terminated by a blank card (see cards (d)). If Program A

is used more than once in any computer run+ for the second and sub-

sequent data sets, it is not necessary to input all Z9 quantities (cards (c)).

Only those quantities which arc changed over the preceding data set

need be entered.

Special Note: Since multiple entries are allowed for observation

time(s) (TJ: input number 16), whenever any any TJ change is entered,

the entire preceding table of TJ's is destroyed.

Program A - A priori Data:

The first card must be a PROGRAM A card (see above). The

second card must contain an 'tA" in column i, and the data set in columns

9 - IZ (see card (e)). Following are cards containing the elements of

the a priori matrix, one element per card (see cards (f)), Columns 1 - 2

contain the row number, columns 4 - 5 contain the column number, and

columns 7 - 20 contain the element itself, in floating point exponential

format (+...x.xxxxxxxE+__xx). Only non-zero elements need be entered.

Read in of the elements is terminated by a blank card (see card (d)).

Z6



If the same procedure is followed except that a "Q" is placed

in column i of the second card, instead of an "A, " the program will

store the desired matrix on tape labeled as a Q matrix. This capa-

bility is sometimes useful when employing the program in non-standard

ways.

Program B Input Data Cards:

References in the following paragraph are to Figure 5.

card of each group must contain PROGRAM B in columns 1 - 9

The second card must contain the data set in columns 1 - 4, and the case

number (within data set) in columns II - IZ (see cards (b)). Following

this are the card(s) which specify the data to be accessed on magnetic

tape (see cards (c)). The card format is as follows:

Columns 1 - 4

" 6 - 7

" II- 15

RANGE

R RA TE

ANG 1

ANG Z

Q

A

P

" 18- 31

The first

(see cards (a)).

Data set

Case number (if any). Data on tape result-

ing from Program A calculations will have

no case number.

Measurable. These columns must contain

one of the following:

= range data

= range rate data

= angle 1 data

= angle Z data

= C) matrix

= A priori matrix

= Previously stored result from

Program B.

Observation time, in floating point exponential

format (+_x.xxxxxxxE+__xx). No entry is required

in this field when the measurable field is

either A or P.
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Columns

Column(s)

I!

fl

It

II

II

II

II

Positioning of the

11)

(z)

(3)

'see Figure 5,

34 - 47 Sigma (o-) in floating point exponential

format. No entry is required in this

field when the measurable field is either

A, Q, or P. In these cases, sigma is

assumed to be 1.0.

The remainder of the card is used to

specify the positioning in the final object

matrix, to be inverted, of the rows and

columns of each individual matrix. The

fields used are:

50 6 x 6 indicator

53- 54 Bias

56 - 57 Station location x error

59 - 60 " " y "

62 - 63 " " "z "

65 - 66 Speed of light

68 - 69 Gravitational constant

71 - 72 Clock rate error

rows and columns resolves down to three distinct cases:

The entire matrix (regardless of size) is to be used without

adjustment. This is accomplished by leaving all fields blank.

Only the first 6 rows and columns of the matrix are to be

used. This is accomplished by a 6 in column 50.

Some positioning of rows and columns> 0 is required. For

this case column 50 is left blank, and the row-column position

in the object matrix must be specified in the appropriate

field of the card for each row-column. A blank field will re-

sult in that row-column being disregarded. For example,

Data Set 0152 Range matrix:
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Information Matrix Object Matrix

Row-column 8 (stat. loc. x error)

" " 9( " " y " )

" " I0( " " z " )

Goes to row-column 7

Goes to row-column 8
o

Goes to row-column 9

All other rows and columns> 6 make no contribution to the object matrix.

The process'of accessing matrices from tape and adding to the final

matrix is continued until a blank card is encountered (see cards (d)).
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APPENDIX A

FACSIMILES OF ACTUAL COMPUTER OUTPUT

(Corresponding to the

Sarnple Problem)
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Th¢ Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 187 H. Engel

7 April 1964

EFFECT OF POOR STATION GEOMETRY

Most of the MSFN stations named in Bissett-Berman Apollo

Note No. 181 are located near a great circle through Cape. Kennedy

and with its maximum North latitude at Cape Kennedy. This is a

reasonable distribution of stations for Earth orbit injection and

Earth orbit tracking. However, it results in a poor station geometry

for tracking vehicles in the vicinity of the Moon.

In order to determine how serious a problem this results in,

we have chosen a worst case and compared the rendezvous prediction

results obtained with those obtained previously with a far better con-

figuration of stations.

The most ill-conditioned geometry appears to occur with the

Moon at a declination of 28°N and a sublunar point at 28.0°N IIZ. 5°W.

In this situation the stations for which the Moon is more than 5° above

the horizon are Guaymas, Corpus Christie, Houston, Cape IKennedy,

Bermuda, Antigua, Hawaii and Goldstone. We see no reason to

penalize ourselves unduly by choosing other than the best three

stations from among these. Therefore, we have used Antigua,

Goldstone and Hawaii.

The results are shown in Figure 2. This worst station geometry

increases the error in prediction rendezvous position by a factor of

4 over those predicted with a far more favorable geometry of stations.
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APOLLO NOTE NO. 188 J. R. Holdsworth

• 8 April 1964

SOME ARITHMETIC RESULTS RELATING TO THE DEGRADATION

OF THE PROBABILITY OF MISSION SUCCESS BECAUSE

OF AN UNFORTUNATE CHOICE OF A MEASURE OF

EFFECTIVENESS FOR THE SIMPLIFIED CORRECTIVE

BOOST PROBLEM

O

The purpose of this note is to present the results of some simple

arithmetic computation°s which will lend quantitative insight into the

comments made in Note 183. The notation used will parallel that used

in the aforementioned note.

• Specifically, we shall assume that our real desire is to maximize

the probability that the terminal value of some scalar state variable y
P

lies in the interval i-T, TJ where r is some known positive number

and subject to the conditions formulated in the second section of Note 183.

However, we shall assume that the actual correction made was that

which minimized the mean square deviation from the desired zero con-

figuration. As mentioned in the earlier note, the optimal strategies for

the two different criteria are not the same. Thus, it is of interest to

inve'stigate numericallygc the difference between Prob (IYI-_T ICopt)

and Prob _YI-_ T ICop t ) as a function of initial displacement and auto-

pilot error where Cop t and Cop t are the various optimal commanded

changes for the two aforementioned measures of effectiveness and are

defined ½y equations (15) and (24) of Note 183 respectively.

In what follows, we shall consider the mission a success if the

value of the terminal state variable y is such that:

lYI <T (1)



Furthermore, we shall write Ps (Copt) and Ps (C:pt) for the

probabilities using the two different procedures.

SUCCESS

From equations (9) and (15) of Note 183 we may write:

where:

and

T

2 dy! exp .... _,c2 (y- x- Copt)
Ps (Copt) = V2_% ICopJ _, 2%

(z)

VTT - + 2ko -2 TX
e

C°pt = ko- Z (3)
• e

k = log --x+ -r ' (4)
X- T "

In equation (4) x is the initial value of the state variable which is assumed

to bee perfectly known positive number greater than'r. As mentioned

before, if X<T the problem is trivial since by choosing Cop t = 0 we

may obtain:

Ps(Copt = 0, x <V) -- 1 '(5)

For computational purposes it is convenient to transform the

integral given by equation (2) so as to express it in terms of certain

dimensionless variables. If we begin by making the change of variable

y -X- C
u = opt

o- Icl (6)
e

then (2) may be written:

2



1

PsCCoQ =

T - X - C

opt

T o- icl _i/2u 2

e @

+x+C
opt

o-icl
e

du (7)

If we now define the dimensionless quantities

Z = T/X (8)

x _-_ ,Zo_ (_I k(z}°-2-e_(z) =
_,z_ 2 + 2 z

e

% I+ z (10)
k(z) = log I - z

l /I+ _. ) (Ii)

\
! /1 -z

2{_, %) - 0% -)

then Ps(Copt) n%ay be written in a natural way in terms of these dimen-

sionless quantities as:

2(_-,%)
" i I/2 u2

Ps(C°Pt' 7' %) = _qT e- du (131

_1(_, %)



%
Equation (13) is interesting not only because it is in a convenient

form for computations but because it exhibits the. fact that Ps(Copt)

depends only upon certain dimensionless variables and the autopilot

error which was also defined to be dimensionless in Note 183.

]Are may proceed in an entirely comparable way for the reduc-

tion of the integral defining Ps(C'opt) by merely replacing Cop t by C opt

in equation {12) and recalling from equation (24) of Note 183 that

O

°" X

C°pt 1 + o-
= - z 1141

e

Then it is an easy exercise to show that by defining the analogous set of

dimensionless quantities given below:

$

, I iz(1+%) - (16)

that the transformed integral defining Ps(C opt ) may be written as:'

* I e du

z,%) = q]7 :_(_,%)

(17)

Now as we have mentioned before, since C is the optimal
opt

correction, if one wishes to minimize the expected square departure

of the terminal state variable y from the zero position, it is not optimal

effectiveness measure P _.,,(IyI_T_" Thus for fixed z andfor the O-

S .2 6,

we shall find that:

4
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Ps(Copt, z, o-e)>_ Ps(C:_opt, z, o-e) (18)

It is the behavior of the magnitude of this inequality with respect to

z and o- that this note seeks to explore numerically.e

This will be done in the following way. A fixed value of z

determines two functions of the dimensionless autopilot error; namely,

Px(Copt, z, o-e) and Ps (c opt' z, _). That is, the family of curves

will be parametrized by z which from prior considerations must range

between zero and one; each member function of the falnily being plotted

as a function of the dimensionless autopilot error o-.
e

Now the dimensionless z = T/X is essentially reciprocal

initial distance from zero expressed in tolerance units, i.e., the ratio

of the semi-length of the tolerance window to the initial displacement

from the desired configuration. It is perhaps appropriate to say a

word about a possible interpretation of the standard deviation o- of
e

the dimensionless autopilot error. Since the dimensionless quantity e

has a zero mean gaussian distribution, then o- is dimensionless so
e

that as o- varies, we naay think of a varying family of gaussian dis-
e

tributions referred to the standard normal distribution with unit mean

and unit standard deviation.

Referred to this standard normal distribution, o- may be te-
e

garded as a measure of sharpness or diffuseness relative to the

_tandard distribution with o- = I. Thus distributions with o- <i are
e e

sharper and in a sense "less random" than the standard distribution

with _:= I' That is, as o- ---0 the total probability mass of the e
e e

disbribution tends to cluster in a very narrow band about the line e = 0

until in the limit where o- = 0, the distribution degenerates, and since
e

all of its unit probability mass is compressed into line e = 0, we may

say in a sense that the distribution of e loses its randomness.

5



On the other hand, for values of o- > 1, the distribution of e
e

is more diffuse or more random than that of the standardized gaussian

variate. As o- becomes very large, the distribution of e loses its
e

sharpness and tends to distribute its probability mass more uniformly

along the entire real line thus producing relatively large uncertainties

in e.

Thus when we plot our functions z or I - z may be interpreted

as a fractional initial distance from the initial success state correspond-

ing to -T_<x..<T, while the parameter o- may be profitably inter-
e

preted as a measure of the uncertainty inherent in our dinnensionless

autopilot error.

There is one other doctrine that is of comparative interest:

namely, the doctrine that the commanded correction should be such as

to remove the observed discrepancy. Expressed quantitatively, this

doctrine says that the commanded change is given by

C = - x (19)

If we denote the probability of getting into the tolerance band using

this maneuver by Ps(C = - x, z, _), then direct substitution into

equation (9) of Note 183 shows that we may write:

T

P (C = -x) = 1 / exp 1 2s "vq-_lxl% ZxZo-z_ y dy. (a0)
-T

Or for computational convenience we may make the change of variable

u = _ (Zl)
Ixlo- e •

and write equation (21) as:

. 6
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or:

Ps(C = - x)

T/Ixl%
f-

1 / - e"

_¢'z=J
-T/Jxlo-

e

Z
I/2 u

du (22)

Ps(C ---- -- X,

z/o-

1 -I/2u
= e du

e

$ z/o-

z -Z/Zu (z3)•
= ,--- e du

Again since the corrective maneuver given by equation (19) is not

optimal for maximizing Ps' it follows that the following inequality'will

exist for all pairs of z and o- .

PCCop_. z. _)>_P (c -- -_... o%) (24)

In general, however, we may not write an inequality relation between

P z_ -
s(C opt' o-e) and Ps(C -x, z, o-e) which will be uniformly valid

for all values of z and Oe, since the direction of any such inequality may

be shown to depend upon the particular pair z, o- for which the probabil-
e 2

ities are evaluated.. However, as was shown in Note 183 when o- << i,

C':' e
then the doctrines Cop t and opt both approach C = - x, so that in the

limit _ve have:

o .

7
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[Ps(Copt) optI ]lira = Ps(C = Ps(C = - x)

z
o-- .-. 0
e

(25)

O

Equation (25) may be paraphrased by saying that in the case where o-
e

is very small, sensible procedures under one criterion are sensible

under another.

The numerical comparisons we have _entioned are largely

self-explanatory and are shown in Figures 1 and 2. The cases we have

considered are adnaittedly extrclue to accentuate the consequences.

The rather interesting thing is that for both of the situations we

l'avc considerud, there seems to be a greater difference between the

Copt and C = - x doctrines as between Cop t and C = - x, when the

measure of effectiveness is a probability such as we have considered.

Thus it may well be worthwhile considering ,note physically realistic

situations and exan_ining n_anhuvering doctrines other than those which

_.;uk to remove the o_served discrepancies.

Finally, we note that wc could h._ve inverted this problem and

assun]ed that what wc really wished to do was to minimize E 2. We

Eye(Co,t), EyZ(C:":opt) Ey 2 Ythen could plot and (C = - x) versus T and o-
e

and would find in this case, of course, that the C _:_ doctrine was the
opt

best. This, h ,vever, was not done as the computation of EyZ(Copt)

requires a tedious_ numerical integration.

$
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APOLLO NOTE NO. 189 L. S. Lustick

14 April 1964

ROTATION OF COVARIANCE MATRICES

_rpose

The purpose of this noLe is to describe a computer program

for obtaining covariance matrices in arbitrary rotated coordinate

systems.

O

Introdaction

For cases when boosts occur and when transit from one sphere

of influence to another are to be considered, it is convenient to be able

to obtain the covariance matrices in rotated coordinate systems. The

purpose of this note is to describe an addition to the orbit determination

progr:=.m which will allow this flexibility.

Method

Let Xl, x 2, x 3
be the coordinates in the new rotated

coordinate system.

Yl' Y2' Y3
be the coordinates in the old coordinate

system.

t.._ l

1] t21 t22

t31 t32

t13\

t23

t33

= transformation that rotates a vector in the

y coordinate system to a vector in the x

coordinate system.
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%
Let the covariance matrix before rotation, [y 1

b d

as shown below.

[y]

1

2

3

4.

5

6

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10 11 12 13

B ,T

I
"i

A' ' B'
I

!

I

I

_.t
I

I

i

I

I

I

I

I

D ,T E ,T

D I

m !

F !

be partitioned

0 The corresponding covariance matrix in the: rotated x coordinate

system is presented below.

1

2

3

4

6

7

8

9

l0

11

lZ

13

1 2 3 4 5 " 6 7 8 9 10 11 12

B T

D T.

!

IB=

' ,)t T' t(B
I

I

',C=
i T
'tlC')t
!

I

I

I

E T

D= t(D')

E= t(E')

] F'

2



%
Let us consider two optional forms of inputting the

rotation matrix.

I. The nine elements of the rotation matrix, tij, can be

inputted directly.

Z. Alternately it will b:: assumed that the input is the three

Euler angles defining the rot._tion.

If we designate the Euler angles in this write up as c_,

_, N with the significance pictured below.

Y3

0

\

x 2

3



then the t.. matrix can be calculated as shown below.
1j

too

_J (cos sin O)(10 0 Ccos si- = -siny cos y 0 0 cos _ sin_ I -sin _ cos

0 0 1 0 -sin_ cos _] 0 0

.

0 i"
I

1

(1)

Computer Program

Consider as a starting point that thc matrix Q coy (T=C) QT

been calculated as is now done in program Z. The following is a

description of modifications to program Z.

h&s

%
le

w

Is the covariance matrix to be obtained in a rotated coordinate

system ?

Yes

Go to step (Z).

Are Euler angles used?

Yes

Calc t.. from
zJ

matrix

equation ( 1 )

No

Obtain t..

elements from

input data

Go to step (3).

No

Continue on with program Z in the

present manner.

• Obtain elements of rotated covariance matrix as shown on

page Z.

4



*o
e Continue on with program Z in the manner now done subsequent

to obtainingQ coy (T=O) QT.

The output of the program Q coy (T=0) QT in the rotated

coordinate system will be stored on the output tape and can be operated

on in subsequent runs as already provided for in the use of previous

results.

O

Additional Input

A, Control Constants

1. Is matrix to be rotated?

2. Are Euler anglcs used?

B, Variable Input

1. Euler •angles (a, _, _) or the nine elements

of the transformation matrix t...
1j

S
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APOLLO NOTE NO. 190 H. Dale

20 April 1964

BOOST VELOCITY PENALTY FOR GYRO DRIFT AND

MSFN ERRORS DURING THE LEM ASCENT BURN

This note presents a preliminary analysis of the way inwhich

the required boost velocity during lunar ascent is affected by guidance

and navigational errors. It is necessary to show that the guidance sys-

tem employed does not cause an excessive velocity penalty. For the

system analyzed, consisting of three MSFN stations with an on-board

attitude reference which drifts at 0.2 degrees per second, it would ap-

pear that a conservative estimate of the total boost penalty to the

"rendezvous box" is less than 30 ft/sec.

For a•conservative estimate of the ability of the MSFN during

powered flight reference is made to Apollo Notes 179 and 187. It appears

that even with extremely poor station geometry, the largest component

of velocity error (the out-of-plane component) will be less than 50 ft/sec,

In the analysis of this note, the above figure is taken to be the unsmoothed,

mean deviation error in velocity normal to the desired velocity to-be-

gained for any single set of MSFN measurements.

The other source of error is the platform angular drift between

boost attitude corrections. For this note strapped down gyros will be

assumed whose drift rate is zero mean random, with a mean deviation

of 0.2 d:egi'e:es per second.

The analysis of the total boost cost during the powered portion

of the ascent follows. Assume N equal boost attitude corrections



,o

2

vs __2

_l Total desired velocity

o ¢# Q

a N

_Vb N

V o

Boost cost _ AV b = Vbl ÷ Vb2 .... VbN - V 0

= Vbl(l -cos a I) + Vb2(l - cos otz).... + VbN(I - cos aN)

Note that _is measured with respect to the horizontal, while a better

angle to deal with is 0 measured with respect to the velocity-to-go.

Vb.

_--/----_ Parallel tovo

Total desired velocity .

V 0

Now we may redefine AV b

N N

"-",,- Zv,,.,,-c°, --Z"b.'
i= I x i= I x

N Z
(O i - 6)

I-cos[0,-6__-_Vbl 2
i=l

Z



N

Vb 6i)Z= -2-_ _.(°i-
i=l

where V b is the actual boost and N is the total number of equal incre-

ments. Now an equation for 6. may be generated.
1

j=i-1 j=i-I

J J
5. = j=l J ._ j=l= where 5

(N- i+ 1)Vb. N - i+ 1
J

1
0

Putting this equation for 6.iin the equation for AV b gives

Vb N

AVb = 2--N _.

- lj=i-I

- 6.

0j 1

. --- 1°i _ N-i+1

2

i=l

; 6 1 = 0

The average value of AV b can be found by taking expected values of the

above relationship. Under this assumption cross products (e.g. 0i0j)

vanish. A recursion relationship for AV b may be generaged by writing

out the expression for N = 2, 3, 4, and 5.

N = 2:_

V__D- 2N[°?+2°1'1

N = 3:

_V b Vb 20: 3 12

N = 4:

AV b Vb 2032 3 4

3



N - 5:

Vb 2042 3
4 5

or in general, for any N

N

vb[ ZK
K--2

At this point it is of interest to consider the type of errors that cause 0..
1

First there are errors caused by gyro drifts. With a random

drift rate of to which is assumed to be uncorrelated with time, the average

error in O caused by gyro drift is

f = one sigma drift rate

(; t _t0

= to where t = time

g 2 _ M = number of uncorrelated

intervals

Assuming that the correlation time is equal to the incremental boost time

gives

__ 2( )2
0 2 = oto

g 4
; since M = 1 by assumption.

u

Thus the component of AV b due to gyro drift may be expressed as

4



gyro

2 2 N

K=?.

The summation may be approximated by an integral giving

gyro

Z x= N+ I

ZN 4 1÷ x- 1

x=2

vb (_)2 vbo2T2( )8_ a: (N+ In N) = _ N+ InN
8N z . N

V b = Z°/sec., and T = 400 sec., the follow-For = 6000 ft/sec., ¢; .

ing AV b results as a function of the number of corrections, N:

5
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t

I

L_

Incremental Boost Cost
for gyro drift alone where: --

V b = 6000 ft/sec ..

T : 400 sec -_!!-t

i

2

_--z % (TIN) z
g 4

2 2 2_
_. _ | + InNl :1

_f_:-,_il!ir!i:!-i_l;!bgyro - aNz i" N ]
" ..... .. t...... I ....... : ""::;'_ : _- -i...... '....... : , l -_-

100 10 1

N (number of corrective
boosts)
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Next are the errors caused by an inability in measuring the

out-of-plane component of velocity. Using three IVISFN stations, the

out-of-plane component is the most difficult one to come by.

.th
x boost

_--- ,X.Vb.(i_ 1)_ ;
1

$ Given that the measurement error is v with mean deviation o- v and zero

mean, then the mean deviation in the pointing of the axis due to this

effect is

= v b (N + I - i)
-- V

1

where as before

N

_,,:::_-Vx:: = _ ON K 1 0N+ 1 - K

K=2

Thus combining these two expressions gives

Vb[ °v_'Vbv = 2---N
I

2 N 2

K-I
K=2 x

/

7



and by substituting an integral for the summation this gives

2

m V

AVb = 2V'--_' 1 + inV ._

This may be plotted as a function of N for reasonable assumptions:

crv = 50 ft/sec., V b = 6000 ft/sec.

Extra Boost Cost

(ft./sec. )

100

10

.1

Average Incremental Boost Cost for Measurement

Error Alone (Vb= 6000 £t/sec., Or= 50 ft,/sec.) 8



It should be noted that since the two causes for 0 i are independent,

that is measurement error and gyro drift, then their effects may.be added

in quadrature:

1/z

This is also shown in the last figure. It can be seen that for the numbers

used, a minimum boost cost of 10 ft/sec, occ_,rs for around twenty

equal boost attitude corrections. It is, of course, not necessary that

all boost bc equal and the figures would imply that it might be a good

idea to make fewer attitude corrections near the end of the flight since

it is here that measurement errors are expensive.

A problem exists in the fact that the above analysis does not

include as part of the boost cost the error made in the very last boost.

This error should be expected to be the measurement error vectorially

summed with the gyro drift error during the last boost.

2_fi2n 2 2 2al = °'v + -_g AVb.
1

2

= % ÷ 4 "

2

Thus the expected value of AVf can be plotted as a function of N

9
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The conclusion which one must draw is that for any number of

correction intervals greater than about ten, the expected termination

velocity error will be equal to the expected value of the measurement

error. In the case of the above assumptions one would expect a terminal

error of about 50 ft/sec.

An interesting way of avoiding the penalty of correcting this error

consists of shutting off the engine ina preplanned manner about 100 ft/sec.

short of the value required for rendezvous. This will place the LEM in

a near circular parking orbit. Two minutes of tracking with the non-

accelerating LEM should yield extremely accurate orbit parameters

determined by the lVISFN. That is, after tracking the coasting LEM

10



for two minutes, the uncertainty of the out-of-plane velocity error

should be at least an order of magnitude better than the previously

assumed 50 ft/sec. Now, assuming that the LEM has been inertially

aligned, a correction can be made which will combine, in quadrature,

the 50 ft/sec, error with the I00 ft/sec, yet to be gained along the

track. The total boost would thus be

ViOO+ __V = 110 ft/sec.

and the cost wouldbe only 10 ft/sec. Since the largest errors will

occur normal to the track, and since the nominal trajectory to rendez-

vous is a Hohmann transfer, it is quite possible to split the error in

two and take half of it out at perilune and the other half at apolune (i. e.,

rendezvous, where the injection velocity is also 100 ft/sec.). This will

reduce the cost of aninitial 50 ft/sec, error to 6 ft/sec. Of course,

this can only be done for 180 degree transfers.

Thus the total "expected" boost velocity penalty should be the

sum of the extra boost during the thrusting ascent and the correction

due to the final cut-off errors discussed above. This average cost of

10 + 10 = Z0 ft/sec, says nothing about the variance in the boost pen-

alty. However, it is probably safe to assume that 30 ft/sec, is a

reasonable pad. Further analysis should define this number more ex-

actly, yet it is safe to say that a 0. 5% required pad is quite small in

comparison with the usual fuel pads which are provided to rocket engines.

7. : :

11
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APOLLO NOTE NO. 191 L. Horowitz

20 April 1964

A ZIMUTH- ELEVA TION CONVERSION

Introduction:

This note describes modifications for converting the existing

radar angle error analysis program to azimuth-elevation analysis.

The criterion for selecting "best" mechanization is that of requiring

minimum overall program modification.

Formulation:

The so-called "x-y" radar angles _I' 6Z' together with the

azimuth-elevation angles A, E, are given in Figure I:

Up

A

J
/

J
V
/\

/ \

E

C

\

\

\
\

North

East
Figure 1



Spherical triangle ABC is shown more clearly in Figure 2:

1

A -- ' C

B

Figure 2

Using Napier's Analogies and the Spherical Law of Sines,

tan A = csc 61 tan 62_

we have

(1)

sin E = cos 6 2 cos 61 (2).

together with the inverse relations

tan _61 = cos A cote (3)

sin 62 = sinA cosE (4)

Now the existing radar-angle program computes information matrices

C 1 from elements of the form

2



O_ (ki O_I (k}

c. _. = _. _ _ (5):1.2
k 1 j

where _t' I = 1, 2 are the two radar angles and a. are the orbit1

parameters whose covariance matrices are to be determined. Assum-

ing $1' _2 data to be independent, the composite information matrix

C is just C 1 + C 2.

In order to modify this program to accommodate a_.imuth-

elevation data instead of radar angle data', we observe

1 1 1

J

where we have written E1 = A, _2 = E for convenience. Now the

0¢. <_

(6)

1

terms _ are already provided by the existing program; the only re-

J ag i

maining terms are the four quantities _- ; i, j = 1,2, These are

given immediately by (1) and (2):

O_ 1 csc _1 cot ¢1 tan _Z

O_l -- " 2sec A

2
csc ¢1 sec CZ

O_Z . cos 6 2 sin _1

= " COS E

(7)

8_2 sin _2 cos _1

= " COS l_.

3



where

V1 Zsec A = + csc _1 tan2 _2

COS E = _/I Z Z- cos _1 cos _Z

, (8)

The information matrices are then added and the covariance matrix of

the orbit parameters obtained in the usual fashion without further modi-

fication to the program.

Caution must be exercised in evaluation of the terms (6), since

_S,_T_-I, _ have vanishingly small denominators {cos E) as E --_ _-.

Appendix I provides a solution to this problem by expressing the terms (6)

in less volatile form.

= :, •

4



A PPENDIX I

. To circumvent the limiting problem described above, we write

the last two terms of (7) as."

8_ z cos 6Zsin _I

_I = -
V1 - cosZ_icosZ_z

8_Z sin 6zcos _1

_z = -
"%/1 - cosZ61cosZ6 z

-and observe from Figure l that

61 - _.v _ E continuously as E ---- _v
2. 2

62 -.- A continuously as A -- 0

so that by physical argument, we can expect the terms (9) to remain

bounded for these critical values of the arguments. Dividing numerator

and denominator of e&ch expression by the offending term, we obtain

-I

_fl + cscZ61 tan z 62

-I

_/I+ tanZ61 csc z 62



a_ 2 a_ 2

In this form, we see that _1 ' _ do not exceed 1

in magnitude for any values of the arguments.

The first two terms of (7) do possess poles at critical values

of _i' _2' however, and are being investigated further.

2
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ACCURACY OF POSITION AND VELOCITY

DETERMINATION DURING BOOST, III

H. Engel
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The results of Bissett-Berman Apollo Note No.

to obtain expressions for matrices M, P, Q, and $.

There are some notation changes. Instead of

185 are used

P00, n+l = _900, n÷l" (_7/£/0,n÷l ,'_00,n÷l)T(_///0, n+l ,i'"00,n+l-//}/'0Tn+l + 'n+_'I)

• , >

• ('_//0, n+l / 00, n+l )

we write

= P -(MnPn)T(M P M T + Qn)-IUn n n n n (MnPn)

and instead of

= _T + 6 Q 6T
_O0, n+l _O0, nPoo, n O0, n 12, n n 12, n

we write

u 6 T + CnRn CTPn+ I = _n n n

Here Q is the error c0variance matrix of the random noise on
n

measurement of position or velocity, and R is the error covariancen

matrix of the random noise on acceleration measurements. P is the
n

error covariance matrix Of the state vector at time tn, prior to measure-

ments at that time, and U is the error covariance matrix of the state
n



vector at time tn, after measurements at that time.

As a first example we consider the following situation. A

vehicle moves in the x, y plane, with accelerations a and a along
x y

its axes. The attitude reference of the vehicle is assumed to be in

error by a fixed, unknown angle 60. The vehicle accelerorneters

are assumed to be perfect and noise-free. The rneasurables are

vehicle acceleration in vehicle coordinates, and x and y in the refer-

ence coordinates. The state vector is

X

i
y

0

The initial velocity is assumed known perfectly, and the plat-

form tilt known with a standard deviation o-8 .

In these circumstances

= a -a 0
n xn yn

= a 0 + a
n xn yn

[axn _ ayn8 ]Xn+l = T + x n

xn yn n

The predicted values of Xn+ 1 and Yn+ 1
are

-a (e+6 T + X +6X
Xn+ I, p = axn yn n n

= . l T + Yn+ 6YnYn+I, p [axn (8 + 6en)+ ayn.

2



in which 6x
n

Then

and 6yn are the errors in the estimates of
n and Yn"

Xn÷ l,p =

Yn÷l, p =

axn- ayn8 ] T + _ + 6_ -a -r6e n
n n yn

] ° + a T 68axn8 + ay n r + Yn + 6Yn xn n

or

= 6&
6--n+ I, p n

6Yn+ I. p'= ,6yn

-a T 68
yn n

+ a 760
xn n

$
68n+ I, = 6()p n

We may then write

6Xn÷ 10 p = 6 n 6X n

in which

_n

1 0 -ayn'/1
1 a 7

0

The expected values of 6X and 6Xn+ are zero and their covariancen 1. p
matrices are U andn Pn+ 1"

The measurables _:m, n and Ym, n depend only on Xn and _n, and

we have



Iim°
Ym, n
] M X

n n

Thus

M

i 0 O]
LO I 0

A particular case of thie: example has been run on a digital

computer, using

P
O

0 0
I

o o.olJ

= [.01 0 ]Qn 0 . Ol

and a = 5 m/see 2, a = 0 m/seez,- and 1-
xn yn

ing to a constant acceleration in the x direction.

= 1 sea. ,

Then

correspond-

0 i!0 1

0 0

The results are shown in Figure 1. The uncertainty in platform

orientation decreases rapidly. The uncertainty in the y component of

velocity jumps from the a priori value of 0 to a maximum of 0. 098 m/see.

in one second, and then decreases slowly. There is no uncertainty

4
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in the x component of velocity because we have assumed perfect ac-

celerometers and because we have used a small angle approximation,

replacing cos 60 with unity.

The first iteration in this case has also been hand computed

and the results compared with the computer output. _re have

I 0MPO = 0 1 oI0 o o °I roo oio o o : L o o o
0 0 .01

MP0 MT [o o1o o

[,01 0 ]MP0 MT + Q = 0 . 01

+ Q = o loo ]

u o

-l

P0 - (MP0)T MP0 MT+ C_ I (MP0)
.J

[0 0 00 0 0

0 0 .01

FO 0

- [0 0.0. 0

i000

0

I00 00

0

0

0 0 0

0 0 0

0 0 .01



_U o
I 0 0
0 I .5

0 0 I

0 0-

0 0 I

0 .O!

m

0

0

0
oo]0 .05

0 .01

P1 : _U06T o]0 .05

0 .01
[o j oj0 1 = 0 .25 05

0 5 0 .05 .01

MP
I I 0= 0 I :]I!0

.25

.05
o].0

0

0 0 0 1
= 0 .Z5 .05]

$ MP1MT .io o o]0 .25 .05 Fi]0

0
o].25

MPIMT + Q
.01

, 0 o].26

MP1MT+ Q] -i o]1

FI
I

Lo
.25

05

0 l
.26

1 [!ol_-6 25

5_



-1 0!:0 r 0

25 I0

5
[!o6.25

1.25

0

1.25

.25

u1 = P1 - (MPll T[Mp, MT+o I (MP 1) = .25 .05 --_
.05 .01

0

6.25

1.25

1.25

.25

0

l
z-6 o

0

° °1•25 .000

• ooo5 .OOOl.]

%
Then

Y
= = O. 098058068(. 25/26) 1/2

and

% = (. 01/26) 1/2 = 0.019611614

The corresponding computer outputs are

and

O-o

y
= O. 098O58O6

o-. = O. 01961162
X

As a second example, we consider the following situation. A

vehicle moves in three dimensions. Its on-board accelerometers

8



measure its acceleration perfectly with respect to its stable platform,

but the platform has initial alignment errors 0x , 0 and O and
" 0 YO Zo

fixed drift rates _x' _y and _z" The range rate of the vehicle is

measured from three stations. The state vector X is

0
X "-

X

Y

z

x

z

0
x 0

0
YO

0
Zo.

¢o
X

Y

W
Z

The n,

n

a -e +8 a
xn zn yn zn

axn - (OzO ÷ C°zntn) ayn + (Oyo + _yt n) azn

Xn+ 1 n n



2

Xn+l = Xn ÷ xrn + Kn T__.2

and the predicted values of Xn+ I and Xn+ 1 are

Xn+ I,p =

Xn+l, p =

Xn+ I + 6x - r n z azn(n ayn(60z0 + t 6_ ) + T 60y 0 + tn6_y)

2 2

xn + 6Xn + T S_:n - T_Z_ ayn(50z0 + tn6_Oz)+r_2__ayn(60y0+tn6COy )

$

Similar expressions may be obtained for the predicted values of

Yn÷ I' Yn+ I' Zn+ 1,and Zn+ I" Then we can write

= 6n 6X6Xn+ I, p n

Z 2
where[ Z T a r a t

1" azn yn 0 zn n

!1 0 0 1" 0 0 0 2 2 Z

I

0 I 0 0 r 0 -_

n

0 0 l 0 0 T

2 2 2
T a T a T a t

xn zn n 0zn 0 , --
2 2

2 2 2 2
T a 1" a 1" a t Tat

_._._.yn xn 0 yn n n n

2 _Z 2 " 2

- 1"a
0 0 0 l 0 0 0 Tazn yn

0 0 0 0 1 0 -Ta
zn

0 0 0 0 0 1 Ta
yn

0 0 0 0 0 0 i

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

000000 0

2
1. a t

yn n
Z

2
T a t

zn n

2

0

1.a t - 1"a t

zn n yn n

0 Ta -Ta t 0 Ta t
xn zn n xn n

-Ta 0 Ta t -Ta t 0
xn yn n xn n

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 1

10



In order to find the M matrix, let us ternporarfly change co-
n

ordinate systems , substituting Xl, x2, x 3 for x, y, z. _Ve let the

vehicle be at Xl, x2' x3 an_ the jth observing station at Xlj; x2j , x3j.

Then, letting all summations be from 1 to 3,

rZ = _(×i - xij)Z
i .

r r = l(xi - xij)x i

i

assuming that the station locations are fixed. Then

or

_r

r._-k = Xk - xk
3

Xk " xk.

8r = J

Also

a_
m "

8_ k

Further,

a_

or

r m

_ _k

8r Xk r 8r

_k = r r _-Xk

and 85/Sx k and 8r/Ss k are the elements• of the Mn

to our normal notation, and letting

matrix. Returning

11



x, y, z be coordinates of vehicle

•xj, _, z. be coordinates of jth station,3

we have

2

r 1 - z )2(x xl)2 + (y-yl) 2 + (z- 1

2
r2 (x- x2)2 + (y - y2 )2 + (z - z2)2

2
r 3

r 1

r 1

_2

r 2

r 3

r 3

m

(x - x3)2 + (y - y3 )2 + (z - z3)2

(x - Xl) x + (y - yl) y + (z - Zl)_.

2
r I

(x-x2)_ + (y-y2) _ + (z-_z)_
2

r 2

(x-x 3)x + (y-y3) y + (z-z 3)z
2

r 3

M

and

x rl X-Xl

r 1 r 1 r 1

x r2 x'x2

r 1 r 2 r 2

r3 x-x3

r 3 r 3 r 3

___" _'1 Y-Yl _ rl z-z

' r 1 r r IYl rl rl 1

1 X-Xl "Y'Yl Z-Zl
, --,--,--, O, O, O, O, O, O,

rI rI rI

9_. ir2y-yz
r 2 r 2 r 2 ' r2

r2 z'z2 x'x2 Y'Y2 z-z2

r2 r2 ' -_-2 ' r2 ' r2 0 O, O, O, 0 0

___ _3 Y-Y3 _.

• r 3 r 3 r 3 ' r 3

r3 z-z3 x-x3 Y-Y3 z'z3

r3 r3 r3 r 3 r3
--,o, o,o,o,o, o,

".,/, 12



O

A particular case of this example has been run.

the vehicle is initially at

In this case

(x, y, z)

stations are at

(0. 38 x 109 , O, O) meters and the three

0

(Xl' YI' Zl)
(0, Z. 4x 106, O)

(xz' Y2' z2) = (0, -2. 1 x 106, I. 2 x 106 )
meters

(x3' Y3' z3)
(0, -Z. l x 106 , -l. Z x 106 ) ;

i. e., the stations are in the plane x = 0, symmetrically distributed

about the origin and at a distance of 2.4 x l06 meters from the origin.

The vehicle has an initial velocity of 800 meters/sec, in the

y direction, and accelerates in that direction at 5 meters/sec 2. The

observation interval is 1 second.

The initial range to the vehicle is very, very nearly x(0)

(= 0.38 x l09 meters). In l0 seconds the vehicle travels 8, 250 meters.

At the end of this time the distance from any station to the vehicle is

very, very nearly

1/Z

r. = [(0.38x I09)z + (8250)z]
J

O. 38 x 109 meters

At the end of 10 seconds

x, y, z = (0. 38 x 109 , 8.25 x 103, O)meters

$
_, _, &. = (0, 850, 0) meters/second

13



. ... ..........

At lO seconds, then, letting Xo 'of x, yand z,
YO' z 0 be the initial Values

X'xI Y'Yl

r--_- = l, _1

X-X 3

_ 8_25x 103 . 2.4x 106

0.38x i0 -g-------" a

= 8.25x 103+ 2. I x 106

•38 x 10 .

Y'Y3

._.2_o3+z.i x 1o6 o
r'-'-_"= ,. r3.. = 8.z5.38×_=

z (y-yz));= ° -2 4 x 106

rl .38x I09 " .38x 109 =

(y-yz) .-..,...,

= "-----2---- '_r2 =

*'2

*:3

r 3 = I. 23 x 10 -8

Z. 1 x 106

• 38 x 109 " • 38 x 109 =

- 2.4 x 106 z-z/

0.38 x 10--9, r'-_ =

2. I x 106 z-z 2

O. 38 x 109 ' r2

2. i x 106 z-z 3

• 38 x 109 ' r3

-1.4I x 10 "9

I. 23 x 10 -8

0

-1.2x

.38x

• 38x I

Mll = O+ 1.23 x i0 "9

........ x 1 = 1. Z3 x 10 -8

IMI 2 = 850

.38x I09 - I.41x 10 -9 Z. 4x 106

o.38 × lo9
= 850

• 38 x 109

and so on, the values of Mi_ at IO Seconds being very little differentfrom those at time O,

"Mll = 1. 33 x 10 "8

2. I0 x 10 -6
• etc. -

/V_lZ

2.24xi0-6

14



%

Thus we may use fixed values for Mij , with very little error.

We take the values at time 0

M ..

1.33xi0 -8 2.10xlO -6 0 1 -6.32x10 -3 0 0 0 0 0 0 O"

-l. 16xlO "8 2.10xlO -6 3.88xi0 -II 1 5. 53xi0 -3 -3.16xi0 "3 0 0 0 0 0 0

-1.16xlO -8 2.10xlO -6 -3.68x10 -11 1 5.53x10 -3 3.16x10 -3 0 0 0 0 0 0

The a priori error covariance matrix was chosen with all elements

zero except

%
10 2 2- - = , metersPO, 1 1 PO, 22 PO, 33

= 6.4 x 10 -5 rad 2
Po, 77 = PO, 88 = PO, 99

rad z 2= P = P = I0 "2 /sec
PO, I0, I0 o, II, II o, IZ, 12

and the measurement noise covariance matrix was

Q __

10 4 0 0 1
0 10 .4 0

0 0 10 .4

The computations were done on a computer using single precision,

but blew up completely after 8 iterations because of accumulated round-

off errors. These results are shown in Figure 2.

Next the computations were done on a computer using double

precision and 10 iterations were computed with negligible round-off

errors. These results appear in Figure 3. The standard deviations

15
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of the position errors in the x, y and z directions are not shown, but

remain approximately I0 meters. The standard deviation in y is not

shown; since the accelerorneters are assumed perfect, the cosines of

the tilt angles equal to unity and o-. equal to zero, o-. remains zero.
Y0 Y

18
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ACCURACY OF POSITION AND VELOCITY

DETERMINATION DURING BOOST, IV

EXbrook 4-3270

It has been pointed out that present platform misalignnaent

rather than initial platform misalignment should be computed. Also

the effects of a gravity field should be included. Further, :_[nce we

intend to ignore the rotation of the Earth and the motion of the Moon

about the Earth in this analysis, we must show that this action is justi-

fied.

We have.

- a + e a + gx= ax Oz y y z

a + ay - 0 a + gy-.= Oz x x z

- a + O a + a + gz0yx xy z

Now

= . 3

and

r

Further, if 6_'is kept to less than,

1631 < 3. 9969 x 1014
(6.3781x 106) 3 (500

m

r I

say, 500 meters,

+ 315001)

- 2
< 2.22 x 10 3 meters/sec

which in 400 seconds would alter the velocity by only 0. 888 meters/second,



and the position by only 178 meters. This is a very loose upper bound,

since the error has been assumed to persist over the entire powered

flight, and because the magnitudes of the error components have been

added directly. Hence if the computations of position and velocity

uncertainty, ignoring 63, lead to position errors of 500 meters or less,

we have a certain upper bound to the error from this source.

The predicted value of 6_.
j, n+l

6_. = 6_.
j, n+l, p j, n

and the predicted value of 60j, n+l is

60. = 60. + T 6_.
J, n+l,p J, n j, n

Then the predicted values of the remaining quantities are

6Xn+ I,p =

6;n÷ I, p =

6;'n÷ I, p =

6Xn+ I, p =

6Yn+ l, p =

6Zn+ l, p =

2

6_ + v(-a 60 + a 60y)+ _--(6a 6_ + a 6Wy)n y z z y z z

" 2_

- a 60x) + _- (ax6CO - a 6C0x)6Yn+ T(aX60z Z Z Z

2_

6Z + T(-a 60 +ay68x) + T (-a 6_ + a 6_x)n x y -Z- x y y

Z 3

6Xn +V6Xn + _--(-ay60 z + az68y) + T_6_(-ay6Wz+a z 5_y)

Z 3

a 6Ox) + _6--(ax6_z a 6_x)6yn+,8 + Z tax60- - - "

Z 3

6Zn+V6; + _-(-a 60 + a 6Ox}_+vn X y y -7--(o_-a6_ +a 6_x)x y y

and the resultant 6 n matrix is

Z



_n

0

0 0

0 0 I

0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

[:oo
0 0

a T

T 0. 0 0 z
2

2 2 3 3
a T a T a T

- Z__.. 0 z _-

2 2 3
a T a T a T

- x - z
z 0 00 -r 0 -_

2 6

Z
a T a T

0 0 T _ - x 0
2 2

3
a T

x

6

Z 3 3
a T a T

-x6 0

2
a T a T

1 0 0 0 aT -aT 0 Z - y
z y 2 Z

2 2
a T a T

" - Z XI 0 -aT 0 aT 0
x x 2 --2----

2 2
a T a T

0 l aT -aT 0 y - X 0

y x 2 Z

0 0 0 I 0 0 T 0 0

0 0 0 0 0 I 0 0 T

0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 I

The other matrices of Apollo Note No. 192 remain unchanged.

In order to demonstrate that for the short time of ascent boost

( 400 seconds) the rotation of the Earth and of the Moon about the Earth

may be ignored, rendezvous computations have been performed using

actual caM and caE' and also using caM- caE = 0 for comparison. The

rendezvous miss is only slightly changed, as shown in Figure 1.
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" APOLLO NOTE NO. 194 L. Horowitz

21 April 1964

ANGLE COMPOSITION

Introduction

This note combines the azimuth-elevation conversion results

of Apollo Note No. 191 with the hinematic equations (Section 3.3 of

Apollo Final Report, NASw-688, 2 March 1964) for radar angle data

to obtain the composition of azimuth-elevation from x-y angle data.

Formulation

The radar angles 61, 62 together with the azimuthal angle A

and elevation angle E are illustrated in Figure 1 of Apollo Note No.

191. Letting 61 = A and 62 = E as before, we have the results of

Note 19!:

861 csc _I cot _l tan 62

= I + csc 2 61 tan 262

(1)

O_l csc 61 sec 2 6 2

= Z
8_2 I + csc 61 tanZ 6Z

(z)

z

_/ 1 + csc 2 61 tan z 6Z

(3)

/'1 + tan 2 61 csc z 6 2

(4)



I I<Equations (3) and (4) present no problem since 0--6-0_---ii_I, i -- 1,2.

Equations (I) and ,(2) do have poles for critical values of 61, 6 2

however and must therefore be combined with the expressions for

86.

to keep the products finite. Here a are the orbit parametersaa.
j J

whose covariance matrices are to be determined:

a_ a_ a_ l a_ a62

aa. - +i a_ 1 aa. aa.
1 1

;1=1,2.

From the kinematics developed in the Final Report,

861 i!1 av i aw 1
= sin 61 cos 61 [--_-- _ -8a---'Y. w -a-a-7]J L j j

862 ( _ 86-- = sin 62 cos 62 I av 1 8u 1
8aj v aa. u Da. cot 61 88.

J J J

(5)

(6)

(7)

where u, v, w are axes moving with the observing station; u East,

v North and w up.

In terms of u, v, w coordinates,

- z + wz Ij v

2-862 - VIv2 + w

J

as explained in Apollo Note No.

"T
aw av I

aa. aa. iJ J _

au u 8v wu [ aw w

8a. v 8a. 2 v2 [aa. vJ j w + j

94. Equations (3) and (4) become

(8)

2



8_z v

a--6-1 = -
V l+v2

-W

_/w z + vz (uZ+v z +W z)

(9)

a6 z a6 z
so that _ , _ remain bounded for all real values of the

arguments u, v, w. The final form for computation results when

(8) and (9) are used in (5):

a_z a_l - v r aw _v ]
= v Oa. w Oa. t

o':')a. 2.. i ", 1 I
x (v z+w z)VFI +v -

• z [ [._,v8_Z a6Z w \/vz +w , au u av wu

- [aa. = vZ vZ wZ aa. v Oa. 2 w 2 [OaiVwz+ (uZ+ + ) _ : v +

a form in wMich the poles of numerator and denominator in (3) and (4)

cancel to produce a well-behaved and manageable result.

The relations between u, v, w and 61, 62 are just

cos 61 =

sin 61 =

w

C v z + w 2

-V

J" v z + w z

cos 6z =

sin 62 -

as shown in Note 94.

v

Z 2
v z + u sin 61

-u sin 61

v z + u 2 sin 2 61

(lO)
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APOLLO NOTE NO. 195

ACCURACY OF POSITION AND VELOCITY

DETERMINATION DURING BOOST, V

H. Engel

23 April 1964

Noise in the accelerometer measurements is introduced to

find expressions for dJn and R n-

%_re have, typically,

= a -0 a +O a
n xn zn yn yn zn

Xn+ 1 = _ + _ 4_n n

and

= _ +Sx -r +
Xn+l, p n n (ayn nyn)(60zn

T

+ _ 6U)Z)+ T(a + nzn)(60zn yn

+ Tn - TO n + TO n
xn zn yn yn zn

in which n and n
nxn' yn zn

measurements. Also,

represent the noise in the accelerometer

Xn+l, p =

• +

2 2

r r (ay.n + TX n + 6X n + V 6X n + -_- nxn - _- + nyn)(6Ozn -_ _z)

2 2 2 2

T 5_y) - -- O n + _- (9 n-Z- (azn + nzn)(SOyn + T T T+ _-- nxn 2 zn yn yn z n

Ignoring terms that are the product of noise and errors in

platform angle, we may write

6Xn+l, _ 6n6X + _bn6Yn n



and 6X are defined as before,in which _n n

6Y
n

n
xn

n

yn

n
zn

and, letting the reference value of O be zero,

2
T

2

0

0

T

0

0

0

0

0

0

2
T

"2-

0

0

0

0

0

0

2
T

2

0

0

T

0

0

2



noise,

Then, R
n is the error covariance matrix of the accelerometer

R R
n

Z
o- 0 0
ax

2
0 a- 0

ay

2
0 0 o

am

3
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APOLLO NOTE NO. 196 H. Epstein

24 April 1964

AN APPROXIMATE TECHNIQUE TO EVALUATE THE EFFECT OF

ERROI%S IN MEASURED VALUES OF THE NORMALIZED

AUTO-CORRELATION FUNCTION FOR A

PROBABILITY DIS TRIBUTION

OF FIRST ORDER

DE PENDENCE

The values of k for a given order of dependence are determined

from the normalized auto-correlation function using the following

matrix equations:

@

@

where [ k 1

[_]- i _.
kq_ 1

kq

.

L

pl !
I i
' P2 i
5 (

• f
I Pq-1 i

1 pq 1



C.. = C.. = 1 fori=j
13 21

= Pm lj-il = m

Letting JR+ AR] [k+Ak] = [p +Ap]

where R, k, and p are true values•

AR, A k, and Ap are error quantities•

or

Then to the first order approximation

r-[R] [_x ] = "_p] - L_R] Ix]

[A_ ] - [ R ]-1([ _,p] _ [ _R ] [ x])

is the desired result.

zero•

For first order dependence, k 1 = Pl

For a matrix order of 4 or greater

. Apl

_P2 "

[ ;,p] - [ AR] .[X ] =

APq- 1

Apq-

= p and all other k's are

pA Pl

!

- p APq_ 2 :

- p APq. l



where

then

Letting ER] : [cij

m

Cji = Cij : p •for J -i I m

where

D.. : D.. : 0
ij j1

=
2

l-p

D11

D°°

11

= D =
qq

2
l+p

2
l-p

1

(1 - p_

i_l,q

Then for q _ 4

(I - pZ) Ak 1

(i - pZ) _x z

(i- pZ) _x
m

z)
: (I + p &Pl P&Pz

= - p (2 +p2) Ap1 + (l + 2.p2) Apz

2

= P iXPm-2 " P {2 + p2)A Pm-l'-

-P&P3

+ (1 + 2 p2) ZXpm _ PAPm+l

for 3 _ m _ q-1

2

= p Apq_2 - 2 p A Pq-1 + &Pq



O
Iris now possible to write the covariance matrix for the

Ak errors (fik i A kj) in terms of the covarianee matrix of the

Ap error (APi Apj). The completion of this effort involves the

calculation of Api Apj in terms of the errors in the original data

to determine A k. A k ..
i j

This analysis implies that 6(0) is exactly known. The analysis

needs to be extended to allow for errors in 6 (0). The approximate

analysis checks well with some computer results.

|
4
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APOLLO NOTE NO. 197 H, Epstein

2-9 April 1964

THE COVARIANCE MATRIX FOR ERRORS IN THE AUTO-CORRELATION

FUNCTION AND LINEAR REGRESSION COEFFICIENTS

_e Approximat e Covariance Matrix for Errors in

Linear Regression Coefficients,

Writing the linear regression expression as

q

x = h' k.x .+e
n /__ 1 n-i n

i=l

or

q

- x -- k ien n Xn-i

i= I

For the situation that e n is gaussian and

e =0
n

i=O
e n en_ i = 6 e

=0

and defining a likelihood function (_) as the negative of the logarithm

of the probability distribution.

Then _ =
l

N[ Xn -

n= I i--1

k i Xn_ i

2

+ _-tn 6e +_-tn (Z_)



The estimated values of _e and the ki's are determined by

differentiation as shown in the following equations.

IXn-kXn- Xn-k i n-i
n=l i=l

= 0

J

N
1

n= 1 Lq _" x 12
X _

n 1 n-i

i=l

LNI ]1 _ 2 h
= -_-- x -x X. xn n i n-i

n= I i= 1

The expected values of these quantities are given by

q

l k i 6 (i-k)

i=l

= 6(k)

where

q

E (_e) = 6(0) - I ki6(i)

i= I

E (X_i) - ki

E (x nxn.i) = _ (i)

2



..... L_ _T-F-_- _ _'-_" r .... _ _ *. -± ........

The technique outlined in Apollo Note No. !96 only needs

slight modification to arrive at the desired linear error coefficients

as follows.

where

k 1

k 2

kq-1

kq

_2

_q-1

_q

3



0

where

P = J 1_ j_ q

Cij -- Cji = _ (m] = _o p(m) [j-i I = m

where P, k, and _ are true values

A P, &k, and A_ are error quantities.

0

Then to a first order approximation

is a suitable expression for the errors in k.

Actually the most desirable expression is in terms of the

covariance matrix for the errors in k.

where

[o]:

4



O

The expected value of the errors in k are given by

_(I_]I_]/:E_iI_I -E_i'E°I[_1

The expected value of the Q matrix can be written from terms

of the covariance matrix for the errors in the-auto-correlation function.

These covariance matrices can be compared to determine which

representation has smaller errors. Following the derivation of the

covariance matrix for the errors in the auto-correlation function, the

solution for three simple examples will be given.

O

Then

Covariance Matrix for Errors
in Auto-correlation Function

N

i_

i=l

X°

Xi+m

N N

i=l j=l
(j-i + n-m) + 6 (j-i + n) 6 (j-i-m)]

N-I

N Z k-?-/- A_ m A6 n p(r) + p(m) p(n) + (I- -_)

60 =I

where

p(k)

n = m+r

p(k+r) + p(k) p(k-r) + p(k+n) p(k-m) + p(k-n) p(k+m)

Since'A6 m A6 n = Z_6 n A6m, at no loss in generality one can

consider m as the smaller value and make r -__0.

5



O

Case la. p = 1 Over The Entire Data Set.

Then A6m A6n - 2 62o

This result is equivalent to calculation of the difference

between the fourth moment and the square of the second moment

of a quantity generated from an unbiased gaussian distribution.

A_ n > Z 6to 2As a slight extension, consider p<__< 0. Then, A6 m

and _A6m A_n =" 60_t_ This indicates that the data set must be

well decorrelated to arrive at suitable accuracy for estimates for

the correlation function.

Case lb. Uncorrelated Noise p(k) = 1 for k=0
= o k_O

Then A 6m A6m+ r

Z_ z
o

N

2
_o

=-g-

r = 0 and m=0

r -0 and m_O

= 0 r _0

The errors in the computed values of the auto-correlation

are uncorrelated for this case as one should expect. It is of interest

to note that the variance of the estimate of 6 is twice the variance
o

in any other value as one would further expect.

Case Z. 6(n) = 60 p
InI

n any integer or zero.

After extensive manipulation,

Z r
60 P

A 6m A6m+r - N G (p, N, m, r)

6



fJ

where G(p, m, r, N)
Zm

= l+p f r+l I Zm( m+l 1+ r Ii-[ 2N] +mp i 2N

Zm

+ np

2 [ 2+- P • 1 -p

_pZ)z '
L

(I

1 ZN) ]---_ (1-p

+
Z

P

(l.pZ)z

l-p

+

2) 2<N_m>l]
(i.pz)z

I I"e Z 1 - -N-]
(,_pz)

for - Nln p>>l, m<< N,

G(p,m,r,N) = G(p,m,r) = {r

t

and n <-< N

+ l+P z (
Z 1

l-p + pZm) + zmpZm

Letting the standard deviation of the normalized error in the

auto-correlation function (o- m) be defined by the following equation:

1

7+Ethen (l+p2) (l+pZm) + ZmP zm
°"m --'_ Z

l-p

7



O

Denoted o- by the value of

1+p2
o-.-- VN(I_pZ)

for m sufficiently large, then

and cr- 1 _---

%
Numerical values for O_o, cr-1, and o- for 0 _ p __< . 9 and N = 1000

are indicated in Figure 1. The results indicate that o->o_ > o-- . The
O 1

form of the equation is such that the maximum standard deviation of the

error occurs for o--
0

tO-o!
_o,_oo__ho_otwo_u_o_t_J :_ _n_o_o_oun__o
rather close, for many applications it should not be necessary to

calculate to a greater accuracy and for such cases the simple expressions

can be used,

The nature of the correlation coefficient between errors can

be simply approximated for m sufficiently large.

and the minimum standard deviation of the error for o- .
O0

J A_ ZX_
m n

Defining P6 (r) = o- o-
re n

then for sufficiently large m

p6(r)_---[i + r (I-P 2) ]
i+9 z

r

P

8
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Figure 1.

Variation o£ the Normalized Standard Deviation

of the Errors in the Auto-correlation

Function with p (for N = 1000)
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%
and a simple example being p_ (i) "_ 2p___2"

l+p

It will be shown in the next portion that the correlation between

errors in k is less than the correlation between errors in the auto-

correlation function aside from the situation of zero order dependence

in which case both type errors are uncorrelated. To this point, the

statement is only proven for first order dependence with 9 < l and

with the further restraint that the linear approximation is satisfactory

(small error condition).

ILl. Samole Cases for Covariance Matrix of Errors in k

Case I. No Dependence (allk's = 0)

%
By inspection, since m >_ 1

A k Ak _ 1 _ A_6 = --!-I for r=O

m m+r 62 m m+r N
0

= 0 for r_O

This covariance matrix is diagonal and the diagonal elements

are all equal. As might be expected, for this situation regression

techniques offer no improvement over the use of the correlation

function.

Case 2. First Order Dependence ( k I = 0 and all other k's zero)

[cij]
m

where Cij = 6o p m

lO



0

P

D.. -- D.. -- 0
13 j1

6o(i_pZ)
]j-i[ = 1

0 where i is the row of the matrix involved.

From the first portion '

i ¢ 1 orq

[o] [Fmo]

Let r = n-rr, with r _- 0

It can be shown that

mn = A6mA_rn+r --P [&=6m-1 Z_6m+r + _6m A6m+r-1 ]

#

+ p2 &6m-I A6m+r-1

7. r ¸

60 P
z) rN (l-p (1- _) for r : In-m I

where m is the row of the matrix involved.

ll



%
To a first order approximation,

6Z r

o P (l_pZ)Fmn N

since r < < N

 oil_ 2 ]

k2 N I
ax i = A q-- -K

Akm 2 "_ N . m _ i,q

._ -o
Ak Ak

m m+l ---N- I<_ m -_ q-I

Ak m Akm+ r _ 0 r_ Z

The form of the k error covariance matrix is such that

error quantities separated by greater than one integer are uncorrelated,

errors separated by one integer have negative correlation for a positive

p and positive correlation for a negative p. This indicates that for

first order dependence, the computed errors in X will tend to oscillate

each lag in sense for a positive p and remain with the same sense for

a negative p. The form of these equations is such as to clearly indicate

the advantage of tests for order of dependence over use of the correlation

function {at least for first order dependence)• These results are

clearly compatible with the viewpoint that the '%est" performance is

obtained when the fewest descriptors with the required accuracy are

employed.

IZ



then

t

and

1

2
or- 1 N

-2 t 2o-k - ._- o5 l+p

Numerical values for these standard deviations are indicated

in Figure 2 as a function of p fo_- N= 1000. These standard deviations

are never greater than the normalized standard deviations for the errors

in the auto-correlation function. The ratio of the standard dev_LatiQ___.5___

for the two types of errors vary between a factor ofoneand J._::P;: •

zxx 1 _x z _× _×q
Defining pk(1) = o-_ o_ = q-1o-1%

and A k k Ak k+ 1

Pk (k) = 2. 2 --_ k -': q-2

o-k
then

and --- .__=9___
Pk (k} -- 2

l+p

The magnitude of these quantities as a function of the magnitude

of p, with N = 1000, are indicated in Figure 3. The maximum value

13
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IV[agnitude of One Lag Correlation

Between Errors in k as a

Function of p (N: I000)
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) I I Ii _ Pk(k )of pk (I) --_"Z 2 and the maximum value of ---_.5.

These results indicate that for first order dependence not only

are fewer error quantities correlated for the k representation (only

the adjacent error terms) than the auto-correlation function representation

(all terms) but, in addition, less correlation is found for the

correlated quantities. The results obtained are encouraging for

the use of order of dependence when lo%v orders of dependence are

present.

,\
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APOLLO NOTE NO. 198 H. Engel

30 April 1964

DETERMINATION OF POSITION AND VELOCITY IN

POWERED FLIGHT BY DOPPLER

MEASUREMENTS ALONE

Let us first consider a one-dimensional case to show that

the manner in which acceleration varies with time is of no importance

insofar as the accuracy with which position can be calculated. We

have that the position, y, is

t

£Y = Yo + y dt.

A Doppler radar, used to determine _r, really finds the

average value of _ in the interval ti, ti+ 1 as

1

]ri, i+l - ti+l- t i (Yi+l - Yi ) + ni

in which Yi, i+l

measurement.

is this average value and n. is the noise in this
x 2

We assume E (ni) = 0 and E (ni nj) = 6ij o- .

Then the computed value of Ym

Yme - Yo + 6 Yo +

n-I

Yi, i+l

i=0

is Ymc '

(ti+ 1 - t i)

= Yo + 6 Yo +

= Yrn + 6 Yo +

m-I m-I

_ (Yi+l " Yi) + _

i-0 i=0

m-I

ni (ti+l - ti)
i=0

n i (ti+ 1 - ti)



in which 6 Yo is the error in Yo"

"second intervals, so that

Let us now take observations at one

m-i

5Ym= Ymc - Ym = 5yo + _. ni

i=0

find

Assuming that E (5 yo) = 0, and 6 Yo uncorrel_ted with ni, we

E (6 ym)= 0

2 2
(Bym )= 6yo

2
+mo-

and this is not dependent on the manner in which the acceleration

varies,

Next we show that in the case of a LEM lifting off the Moon,

the errors in the three components of velocity computed on the basis

of Doppler measurements from three Earth stations and estimates of

vehicle position are not sensitive to errors in the estimates of vehicle

position.

In the notation of Apollo Note No. 19Z, we have

3

rj r'j = /__' (xi " xij) x'l "
i= 1

Then, considering only errors in position,

they have on computed velocity, we have

3 3

i=l i=l

and the effect

NOW, since 3

r.2.] = _ (xi-xij) z

i=l

2



it follows that

3

rj drj = I (xi " xij) dx i

i=l

so by substitution in the equation for _. d r. we find
3 3

3 3

E - _. dx. =(xi " xij) r. 1 1
i= 1 J i= 1

(xi - xij) d_.l

or

3 0_'.

_. -_2 d_.- --_ dx. =
Ox. 1 /-" 0:_. z

i- 1 1 i= 1 1

We can Write this last equation in matrix form, j running

from 1 to 3, as

or

l!0 ]d_ = - _ , I dx:

a_ Lax L J

• [i [JThe expected values of dx and dJx are zero. Then,

E [_T d_] = ___IT[I e--__lra-__IITF_II[_"]LLa_JLaxJJ Laxj [_xl)

3



$
From Apollo Note No. 192 we may take

1 - 6.32 x 10 -3 0

1 5.53 x 10 -3 -3. 16 x I0

-3
1 5.53 x I0 3. 16 x i0

-3

-3

and

axJ .

I.33 x 10-8

- I. 16 x i0"8

Z. I0 x 10 -6

Z. i0 x 10 -6

[- I. 16 x 10-8 Z. I0 x I0 -6

Then,

0

3.68 x I0"

-3.68 x i0"

ll

II

81"]" 1a_

.466 .267 .267

-84.4 4Z. Z 42.2

0 -158. 158.

-ILax

0
Z. i0 x I0"6

L°
2. i0 x I0

0

0

-6
0

0

I. 16 x 10 -8

4



X

- - -1

ai- :

_x

I 10.12
4.41 x 0

- _ 0 .t. 41 x 10
I

!
l 0 0

-lZ
0

1.33 x I0 -16 ]

SO

10-16 Z+ 1.33 x E (dx)

Thus even if the error indxl, dx Z or dx 3 is as large as 104

the resultant error in the computed velocity is 2. 1 cm/sec.

Continuing to use the example from Apollo Note No. 9Z, we

now show that the position errors will be small compared to 104 meters.

There are two parts to this demonstration. In the first part we find

the errors in position-due to noise on the radar measurements. In

the second part we show that the errors due to using the wrong position

in computing the gravitational acceleration are non-existent.

We have already found that the rms error in position due to

radar noise and initial position error is

ym)Z z zE(6 = 6y ° +mo-

If we assume that the initial position is known to 100 meters,

and consider the worst case, at burnout after 400 seconds, and assume

the range-range measurements accurate to 3 cm/sec., we find that

due to the geometry o- is 4.8 m/see. (=160 x 3 cm/sec), and



2.
E (6Y400) - 104 + 400 (4.8) 2

= 19,200

Thus the rms error in position at 400 seconds is 139 meters

{= [19, ZOO ] I/2 ) as compared to I00 meters at the start of boost.

Actually, we do not have to consider the Moon's gravitational

field at all in determining the LEM velocity in this manner since the

range-rate measurements include the effect of that field.

Thus we have shown that by using Doppler data accurate to

3 cm/sec, for one second measurements from three stations on the

Earth separated from one another by at least 2400 kin, and have a

priori knowledge of the LEM position on the Moon's surface to 100

meters, then at any time up to burnout at 400 seconds we know the

LEM velocity to better than 4.8m/see. and its position to better

than 140 meters.

As a consequence it appears that a very simple data processing

scheme, utilizing only three radars and no data from the on-board

system will suffice to put the LEM in an excellent rendezvous transfer

orbit.

)

6
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APOLLO NOTE NO. 199

A DERIVATION OF A POLARITY DIFFERENCE

ESTIMATE OF THE NOR_h6ALIZED

CORRELATION PARAMETER

J. R.. Holdsworth

4 May 1964

The purpose of this note is to present a _imple derivation of an

estimate of the normalized correlation function of a stationary zero

mean gaussian process which does not depend upon amplitude informa-

tion but only upon the agreement or disagreement in sign of the lagged

sample pairs.

We shall assume that we have polarity information, i.e., whether

the observation is positive or negative, on N pairs of variat_s xi, Yi

for i = i,... N, where for any fixed i, Yi is to be regarded as an ob-

servation made at some fixed frame lag T after the observation x. has
1

been made. By preserving only polarity information we mean that in-

stead of recording the actual measurements x.1 and Yi we merely record

sgn(xi) and sgn(Yi) whore:

sgn(x i}. . = + 1 if x.>x 0 and sgn(x i). - = 1 if x.x<0.

Now sgn(x i) sgn(y i) = _+ 1 depending upon whether or not x.x and Yi

have the same sign or not. Let N+ denote the number of polarity co-

incidences in the lagged sample pairs; i.e., the number of times that

sgn(xl)sgn(yi) = 1 and let N_ denote the number of anti-coincidences

or the number of sample pairs such that sgn(xi)sgn(Yi) = - I. Then

we clearly have:

N = N+ + N. (I)

.i
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For simplicity we shall assume that the successive sample

pairs are independent or that the time between x.1 and Xi+l is larger

than either the correlation time or the constant lag T between x. and Yi"1

This is not strictly necessary but simplifies the derivation by allowing

us to work with only bivariate distributions.

Since we have assumed the process to be stationary and gaussian
2

with a zero mean, and if we denote the variance by o- and the coefficient

of correlation between any x,y pair by p, then the joint probability

density function of x and y may be written as:

1 1
f(x, y) = exp -

Z)o2
21r A/l__'o 2 2(1-p -

(xz - 2pxy + yZ) (2)

J

Now assume that we have a large number N of sample pairs

xi' Yi and that for illustrative purposes we plot them in a scatter diagram

as shown below:

Y

J

.o

,o

h

..... %,..X

Figure 1

2
• I
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From Figure (I) we see that the xi, Yi sample pairs which lie in the

first or third quadrant are those for which sgn(xi)sgn(Yi) = 1 so that

N+ is the number of sample pairs which lie in the first or third quad-

rants in the scatter diagram. Similarly the sample pairs xi, Yi for

which sgn(xi)sgn(Yi) = -I are those lying in either the second or fourth

quadrants. Thus N_ is the number of sample pairs contained in the

second or fourth quadrants.

Now intuitively if there is a strong positive correlation between

x.l and Yi' we would expect the sample points to generally cluster in the

first and third quadrants while if there is a strong negative correlation,

we would expect the second and fourth quadrants to contain most of the

sample pairs. Also, if the correlation were very weak, we would not

expect any particular preferential clustering of the sample points among

the quadrant pairs.

We shall now show how to obtain an estimate of p which is con-

sistent and depends only upon the numbers N+ and N, i.e., only upon

gross sign information of the sample pairs. It will also be of some

interest to note that this estimator does not depend upon the variance

0.2 which saves us the trouble of estimating o-z were it unknown.

From the law of large number we know that when N is sufficiently
N+

large that the sample ratio-_ will be approximately equal to the

probability content of the first and third quadrant as determined by the

probability density function in equation (2). Similarly we know that N__/
N

will for large N, approximate the probability content of quadrants two

and four. Hence for sufficiently large N we may write the following ap-

proximate relation:

co oo 0 co

// //0f(x, y) dxdy - f(x, y)dxdy ___ _ lq -

0 0 -co

(3)

where f(x, y) is given by equation (Z).

J
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Let the first and second integrals appearing on the left-hand

side of equation (3) be denoted by I 1 and 12 respectively. To evaluate

I 1 and I2, it is convenient to transform to dimensionless polar co-

ordinates by making the following transformation:

X "- A/i z- p o-r cos 6

y = "VI - p2 o-i. sin ,9 for -=_<8 <_w (4)

Now let g(r, O) be the probability density function of the transfo'zmed

coordinates r and O.

Then by the transformat:on law for probability distributions

under changes of coordinates we know that:

g(r, O) =
y)!

I-

f(x,y) (5)

where

responding to the transformation given by (4).

8(r, 8) is the absolute value of the Eacobian determin:znt cor-

An easy calculation

shows that:

I 2 _/ - p o-r sin e

1 - 9 o" cos e - "1
Z

p o- sin 8 1 - p err cos e

(6)

or:

! [ 21_z(l - p r (7)
_(r, e) =

Now by substituting the expressions given in (4) for x and y into

equation (2) and by substituting the result together with equation (7) in

equation (5) we obtain:

, 4



g(r, 8) = vl - p r 1
2

2_r exp - _ (I - p sin 28) r (8)

From equation (8) we see that g(r, B) is independent of the
2

variance o- . Thus the integrals I1 and I2 will also be independent of
2 ^

o- . The estimate p will be obtained by explicitly evaluating I1 and Iz

which will be only functions of 9 and then substituting these quantities
A

into the approximate equation (3). p may then be obtained by solving
^ N+ -N-

(3) for p as a function of
N

Now from equations (3) and (8) we have:

I1

" =IZ oo

fo fo g(r, O)drdO

2 =/Z oo
V1 - p ff f r exp- 1 (I sin 28)rZdrdO

2rr _0 JO Z" - P

2 z/Z
ql - p f

2= _/0 I - p

d8
sin 28

(9)

l
_-_ arcos (-p)

Similarly for I2 we have:

12

0 CO

ffg,ro,drdo
-_[2 0

5



2 0 O0

ff 1r exp-_(1 - p

-_[2 0

2 0

Yl_p /
21r -_r/2

dO

1 - p sin 20

sin 20) r2dr dO

(10)

1
_-_ arcos (p)

Substituting equations (9) and (i0) into (3) we have:

A...2_.[.arcos (-p) - arcos(p)] = -2 _ (11)

However, since we have chosen our angular arguments to lie between

+.w, we have:

arcos (-p } - arcos (p) (12)

which implies :

ar¢os(_)

_rom which

A
p = COS

W

2 2 N+ - N_)

]

(13)

(14)

or finally:

6



N+-N )^ _ " (15)p = sin _

Note that _ depends only upon the single sample quantity N+ - N_
N "

It is somewhat remarkable that any consistent estimator of the correla-

tion coefficient can be obtained from such a tremendous compression

^
of the observations, p is of course a statistic and will exhibit random

fluctuations from sarape to sample. The consistency of the estimate

follows from the fact that the law of large numbers guarantees that

for sufficiently large N, the approximation given by (3) may be made
^

arbitrarily close. The derivation of the sampling distribution of p is

very simple since it is essentially binominially distributed under our

assumption of pair-wise independence. In the more general case where

the pairs are correlated, the sampling distribution is much harder to

compute. It is of course a less efficient estimate of p than is the

Pearson product moment estimator r which requires, however, much

more information to be recorded from the samples. Its advantage is

that it is much quicker to compute or perhaps more importantly, it

allows the estimation of the correlation function when only zero cross-

ing information is available and in other situations where the basic

data are censored to the extent that more conventional estimates can't

be computed.

^

Finally , we repeat that the estimator p as given by (15) is con-.

sistent under much weaker assumptions than the pair-wise independence

of lagged observations, an assumption which we never explicitly used

anyway. The same derivation is essentially valid in this case. The

effect of pair-wise sample correlation is to partially degrade the validity

of the approximation given in (3) based upon the law of large numbers. In

other words, in order that (3) hold to a given order of accuracy, it will

be necessary to have a much larger value of N if the sample pairs

(xi, yi) and (xi+ I, Yi+l ) are correlated than if they are independent.

From the point of view of the estimator, the effect of the palr-wise



4__

correlation is to make the sampling distribution of the estimate more

erratic and to reduce its rate of approach to asymptotic stability with

an increasing sample size.

^
The estimator @ is known in the literature and occasionally

quoted; however, [ have never seen the simple heuristic development

which we have given here in print, although it is undoubtedly well known.

It is given here mainly as a convenient reference since it does not

appear to be accessible in any of the standard texts.

8
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APOLLO NOTE NO. 200 H. Epstein

i May 1964

BOUNDS FOR k's INVOLVED IN LINEAR REGRESSION

THEORY FOR A STATIONARY PROCESS

q

Writing x = _" k. x . + e
n /__, 1 n-1 n

i--I

The characteristic equation is given by

q

q-ixip -o
i=1

where

Let the roots of the characteristic equation be given by Pr

r= 1,2,3 ...... q-l, q.

I I

For a stationary process, I Prl <-- 1.

Making use of the properties of the roots of a polynomial

equation,

For example,

q

q

-]7]- Pr
r=l

k

r=l

In general,

i; (q-i):
q_.l



For q an even number, the maximum possible k = k

zq
which for large q, (k)q -_ ------- . These results indicate that for

large q's, the values for k i may be very large.

An example of a regressive model of this characteristic is

q q, b i

Z Xn- i'x n + . = e

i= I i: (q-i) .' n

Defining X(s )

E(s) = x(s)
_. q, b i -isT

1+ e

i=l i.I (q- i);
] C "sTlq= X(s) l+be

where T = interval between samples.

Replacing s by j¢o and letting W x = X (j¢_) X(-j¢o)

W = E (j_) E (-j_)
e

Wx = We [ l+b2+Zb cos_T] -q

z



Restricting the analysis to positive frequencies and taking

aliasing into account,

max 1

max 2Tr 2T

k k= i, 1,2 ....... N
fk = -N- fmax

where N - total number of samples available.

Then for W e a constant (white noise spectrum),

' [ b z _k I'ZqWx(k J = W e 1 + + 2b cos

for b=- 0 Wx(N ) = (Wx) = W e (l-b) -Zq
max

w_(0) = (wx) = we (1+b)-zq
rain

forb_< 0 W(0) = (_) = W (l+b)-zq
max

Wx(N) = (Wx) = w e (l-b)-zq
max

3
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APOLLO NOTE NO. Z01 H. Epstein

6 May 1964

RECEIVER NOISE LIMITATION

TO DIFFERENTIAL RANGE ACCURACY

This note indicates a conservative limit to the accuracy which

is imposed on the differential range measurements by receiver noise

for the Apollo mission. The most severe condition to be encountered

will occur for the spacecraft transmitting to Earth under the following

conditions: one, spacecraft employing an omni-direction antenna;

two, a 30 feet receiving antenna instead of the 85 feet antenna; three,

maximum spacecraft separation from Earth (-_ 4 x 108 meters); four,

shortest sampling time (one second); and, five, parametric amplifiers

rather than masers for the low noise receiver (noise figure about 0 db).

In addition, a conservative estimate of the effective noise figure (which

will be defined later in this note) is taken as 17 db. The standard

deviation of the error in differential range is shown to be about . 08 cm

under this situation for a 5 watt transmitter in the spacecraft. Clearly

receiver noise is not an important error source for differential range

accuracy in the doppler mode of operation. The mathematical model

will 'now be derived. Equation (9), Apollo Note 112, indicates the

following result for an unmodulated CW transmitter waveform,

aR - × (1)

In addition, for this situation

E o KT

= Fe -sff (2)N--_



and

K (3)

where

AR standard deviation of the differential range error

k = transmitter wavelength (.,-, 13 cm)

E
O energy received during the sampling time (watt-seconds)

N
o noise power density (watt-seconds)

T
S

sampling time (1 second)

Fef f = effective noise figure = 17 db

PT = transmitter power level = 5 watts

D = receiving antenna dish diameter = 10 meters

K = separation between spacecraft and station = 4 x 10 8 meters

k = Boltzman constant

T = temperature reference for noise figure

kT = 4 x 10 "21 watt seconds

G T

then _-R =

transmitting antenna power gain = 0 db,

.081 cm for the above stated numerical values.



J
To satisfactorily conclude this note the selected value for

Fef f needs to be justified as conservative. Fef f is taken to include

the following factors: one, receiver noise figure component associated

with internal receiver noise and external background noise (0 db);

two, transmitting losses (2 db); receiver losses (1 db); imperfect

process loss (3 db); receiving antenna efficiency considered as a

loss (3 db); transmission media losses, transmitting antenna degradation,

and other system degradation factors (8db). The total for Fef f is then

17 db.
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,APOLLO NOTE NO. 20Z

SELF-CORRELATED MEASUREMENTS

L. S. Lustick

6 May 1964

purpose

-The purpose of this report is to indicate how to determine the

errors in the orbit parameters when the sequence of measurements

are correlated.

Introduction

Previous Apollo notes and the existing program for orbit de-

termination assumes that successivemeasurements of a measurable

are uncorrelated. The purpose of this Apollo Note is to indicate how

this analysis can be extended in the event that successive measure-

ments are correlated.

Method

Consider a random sequence of numbers generated by the

auto-regressive model shown in Equation (1).

q

: .. xjel" i-j x

j--1

(i)

where:

g i is a zero mean gaussian variable.

_i _i÷m = 0 m _ 0

2

= o-_ m=O

The order of dependence of a process generated as shown in

Equation ' ) is q, where the term order of dependence is defined in

Equation (Z).



%
[ j [ ]p en/en_l, en_z...,e I = p en/en_l...,en_ q (2)

• can be
The joint distribution of a set of measurables e,

defined recursively as shown ia Equation (3),

[ ] [eq+1' ] [ ]P el,ez...,eq x p el, eZ. .., eq = p e l,eZ. ••, eq+ 1
(3)

The above equation can be used to define the likelihood of a

set ofmeasurables and the orbit parameters can be determined which

maximize the likelihood of the data set. This procedure is illustrated

for an order of dependence equal to one in the following analysis.

Consider:

ei = kl el-1 + _i (4)

where: e.
1

2
since e.

= error in measurable at time t = t.
I

zeiz ÷, z= kl -I _i + Z _ikl ei. I and _i ei-I = 0

then 2
= Z

% 1.x I
(s)

let

m. = measurement at time t = t.
I 1

mc. - computed value at time t = t.1

The correlation function for this process is exponential, that is;

Pn -- kl Pn-1

More sophisticated correlation functions can be obtained with

higher orders of dependence. 2



The likelihood expression, Z, is presented in Equation (6).

]2 ]2)
= _ + m i- mc.) - k 1 (mi_ 1 - mci.1)1 1-k ) ml- mcl i=2 1

(6

Linearizing we have:

m 1- mcl = m t + e I " c1+ a_" Aak : el- aa_I Aak

am

m.- mci= e. -- ___)i ci-I Aa k, i 8a k
k

am

ci_ 1

mi " mci-I = el-1 - Z _a k
k

Aa k

- ( - }m i - mci kl mi_ 1 mci_ 1 am]¢i- 1 Z_ak
kl 8a k

Rewriting Equation (6) we have;

{,_- I Z (1-kZ1) el- Z 8ak Z_ak
z°-a: k

+ [@mci

i=Z
kl aa k Z_ak



ao_f.
aa-K--.

J
- o = (1-_u)Z

am
c

o_a.

J

N _.8m¢i..

i=2  mci mci_ 
Let

N _amci

C k- T. N
i=2

am c _ /am

i-_ _ ciaa k
-k I

amc" l_

1-

aa k

2
. _k = (1-kl)

am am
c I c 1

aaj aa k

Now writing the matrix equation defining Aa k

(F + C)(Aak)= (1-_._) e I

t'8mc "_
1

aa
1

8m
c 1

aa 2

8m
c 1

aa 6

+

r_A_ amc \
[ ci

il__=_ _ -k i-l]

N /amcf am c

- k 1 aa 6
i=Z\

4



(F+ C) (Aa k) = (l-klZ) e I (A) + (B)

z_ak = (F+C) "1 [(1-kz) etA+B]

AakAaT = (F+C) "I [(

-I
(F + C)

(F + c)'l

(7)

or

,,%Aa_ --(1__} Ze (F+C}"I (Ta)

If k 1 = O, the order of dependence is zero,

expression for Aa k Aa T is as shown in Equation (8).

Z_ak Z_a_ o-Z(G) "I

and the

where N 8m Bm

Z ci c i
Gjk = _aj _a k

i=l

This is the result that one would expect for independent data.

(8)

5



.Comparison of Correlated with Uncorrelated Data

.It will be instructive to investigate the effect of correlation upon

the errors in the determination of the orbit parameters.

Neglecting end effects the information matrix with correlation

(order of dependence of one) is given in Equation (9).

(9)

Cjk= G-Zk

where G =
am. am.

8aj .aa k

^
Let us now define C as shown below

1 1-1 1Cjk-- 8a. " 8a. 8a k aa k
J J

A _ ami- 1 ami
then C = Z G - Z " 8aj 8a k

Or

ami. 1 am.7.
8a_ 8a k

= G -

A
C
--2-



Substituting then in the expression for Cjk , we have;

= )2 h
Cjk (1 - k 1 G + kI C

A
C is approximately the information matrix obtained if the

measurable is the derivative of the measurable used to obtain G.
h

We know therefore that if we drop out the term involving C, we

will obtain a pessimistic covariance matrix for the errors in the

orbit parameters. This result is presented in Equation (10).

"¢ ! l+k ! o-z G -1
- p-:t-/ o

uncorrelated data

(lO)
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ADDENDUM TO

APOLLO NOTE NO. 203 H. Epstein

The present technique employed by JPL for calculation of

differential range is an excellent technique. The major deficiency

for Apollo application stems from the magnitude of the quantization

error. This problem area is most significant for short counting

time intervals. This error can be considerably reduced for Apollo.

With no change, the standard deviation of this type error will be

reduced by a factor of almost 2-1/2 due to the increased carrier

frequency employed for Apollo. Two other rather straightforward

techniques can be employedto further reduce this error. A technique

which counts both positive and negative zero crossing, properly imple-

mented, would reduce this error byan additional factor of two. Another

technique would involve a multiplier for the doppler frequency prior

to counting. The limitation imposed here would be associated with

the multiplier noise generated. A multiplication ratio of about 10

seems reasonable. This indicates that quantization error can be

reduced by about two order of magnitude for Apollo application.

II
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APOLLO NOTE NO. Z03 H. Epstein

8 May 1964

SOME CHARACTERISTICS OF QUANTIZATION ERRORS

This note is concerned with some properties of the quantization

error associated with a simple fixed time period system for measure-

ment of differential range by zero crossing techniques. All other error

sources are considered as being negligible for the purpose of this

analysis. The quantization error is most simply represented by

considering the error in the count involved. The figure below indi-

cates the model for the process.

1 2

True Value _"

3 N N+I

N+Z
1

- yi + z -1Then A x i = XTrue - Xmeas i (i)

Considering Yi and z.x each as random variables with uniform

probability of an error occurring between zero and one count.
1

-- -- r I

Then y = z = JO y dy=
(z)

Ax. can now be written as
1

1 1

Axi = Yi - 2 + zi "2 - (Yi " _) + (zi " z ) (3)



then _x2 = {Yi - _}Z ÷ {z i.z}2 ÷ Z

For {Yi - _) (zi - _-) - 0 .

(Yi -_) (zi -_} (4)

(s}

(Yi _)2 _--)2 / _ 1 )Z- = (z i z = (y _ dy = -lZ

1
and o- =

x V-G-
= .408 is the desired result

(6}

(7)

This indicates that the standard deviation of the quantization

error for this situation is about ,4 counts. The associated differential

range error (OAR) is given for a two-way doppler mode by the follow-

ing equation.

w

X
OAR =

z_--
(8)

where
m

k = average wavelength of the ground-based and space-

craft transmitter frequencies.

The corresponding formulas for the average range-rate error

(c_) and the frequency error (cry) are given by

k

ZT o_'-g--

where

T counting interval

1

(9)

(IO)

Z
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The transmftting and receiving frequencies for the present

L-band DSIF are 890 and 960 mc respectively• The associated

differential range error is 6.63 cm (_ = 3Z. 5 cm). The frequency

and range-rate errors for T = I, 10, 50, and 60 seconds are

indicated in the table below•

TABLE I.

Frequency and Range-Rate Quantization Errors

(seconds) (cps)

1

10

50

60

•4O8

.0408

•00817

•OO68O

o%
(cmlsec.)

6.64

•664
I

• 133

.II0

....... J

The correlation function associated with this model for

quantization error model assumed can easily be calculated. Both

continuous counting and interrupted counting techniques will be

treated. The value of the correlation function for l_oth cases with

lag values greater than one is zero. As a consequence, it is only

necessary to calculate the variance and the one lag values.

Letting

_-- " e -
Xn n e n- 1 (ll)

then
Z Z

o- = _ = Zo-
X 0 e

(IZ)

3



r

O

and _(i) -- (en- en.l) (en_l_ 6 - en_2_ 6 ) (13)

where

6 = 0

6 > 0

for continuous counting

interrupted counting techniques

then _(I) = - (en.l) (en_l_/x) (l_a)

2
= - or for 5 = 0 (14b)e

= 0 for6> 0 (14c)

0

or
1

p(1) = - _ for 6 = 0

= 0 for6 > 0

(15a)

(lSb)

One simple test for such an hypotheses with actual measure-

ment data is to establish confidence limits in terms of the variance

of the errors in the auto-correlation function with the assumed model,

The covariance matrix for the errors in the auto-correlation function

was shown in Apollo Note No. 197 to be of the following form.

N _mZ_m+ r,-Z-
_o

" = p(r) + p(m) 0(re+r)

N-I

+ (I- _I ) p(k) p(k+r) + p(k) p(k-r)

k=l

p(k+m+r) p(k-m) + p(k-m-r) p(k+m) ]+

(16)

.



The following simplification can be made for the quantization

error n2odel.

= 1 [
_-o "a_m a6m+r p(r) + p(m) p(m+r) + (I - -_- } p(1) p(l+r)

+ p(1) p(r-l) + p(l+m+r) p(m-l) ÷ p(m+r-l) p(m+l) ]

(17)

where m is the row of the matrix involved and r :_ 0.

terms can be found from symmetry (_6i ZS6j = 'A6j A6i ).

Letting p(1) = p, the following expressions are found

Oth e r

m

z pz( i z
A6 = 2+4 I--_)--_2 +4p

O

(18)

2 2N A6 = I +p2 (3 -_)_ I +3p7
O

(19)

N 1 2,TE" _6 = i +Zp 2(i--N)'' l+zp
,6o

for m _> Z (z0)

6-zN A6 oz_61 = 2p (Z - __)_I 4p
O

(21)

N , , 1

,--2"X_m a_m+l = p(2- -N--)_--Z p
$o

form __ 1 (22)

5



N ,

"_- L_o _2 = 2 p2 (1- ___).v291 2
0

(23)

-' _ 2 l ._ 2
A_ m A_m+ 2 9 (i- _ P form _ I (24)

"A_ m A_m+ r = 0 fort _ 3 (25)

Which for the interrupted counting technique

1 _--_o,_ . 2,-2- N
_o

(26)

1 2 1
,-2- A_ _"
6o m N

m__ 1
(27)

A_ m A6m+r = 0 r _. 1
(28)

• 1
and for the continuous counting technique (9 = _ )

_-1 Ag----_ "_ N3
O

(29}

1- A--_2 _ 1.75
_3 _I N
0

(30)

6

.......... I[_mnu



1 _ ,.,.,1.5N
O

m=.-Z (31)

_6--T" _o A_I -- "R-
O

(3Z)

-_o m m+l -- -_- m__l (33)

1 _., 1

"_'6o A6a zN
0

(34)

l -- ,.,., 1

Z_m A6m+2 4N
O

m:_ 1 (35)

h6 m A6m+ r = 0 r __ 3 (36)

A normalized standard deviation of the errors in the auto-

correlation function (O-k) is defined by the following expression.

Figures 1 and 2 indicate numerical values for o--k as a function

of N for the interrupted and continuous counting techniques.



%
The normalized correlation coefficient between errors for the

continuous techniques is defined below

_k A_k+r
p(k, r) - _z

= 1 r = 0

= 0 r_> 3

Other values are indicated in the table below.

Table 2.

Normalized Correlation Coefficient ]Between

Errors for Continuous Counting

k

0

1

='2

p(k, I)

-.872

-.617

-.667

p(k, 2)

.Z36

. 154

.167

This table clearly indicates the strong correlation between

adjacent errors.

8
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100 200 500

Figure 2.

Normalized Standard Deviation of Errors in

Auto=correlation Function with Continuous Counting Techniques

10
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APOLLO NOTE NO. 204 J. R. Holdsworth

12 May 1964

THE ESTIMATION OF THE PARAMETERS OF AN

AU TOREGRESSIVE S TA TIONAR Y S TOCHAS TIC

PROCESS OF FINITE ORDER

O

Some previous Apollo Notes have dealt with the problem of

estimating functionals of stationary stochastic processes such as the

power spectral density functionand/or autocorrelation function. These

problems generally possess the property that only very minimal a

priori assumptions are made about the underlying structure of the pro-

cess such as their stationarityand gaussian nature, etc.

The purpose of the present note is to consider a class of problems

where the a priori assumptions about the nature of the time series are

much stronger. , In fact, we shall assume that the probabilistic structure

of the time series is/<hewn with the exception of a finite number of

parameters whose values are to be estimated from observations made

upon the time series. The name "finite parameter scheme" has been

used to denote this general problem area which actually comprises

two major sub-problems. The first which will not concern us in this

note is the problem of estimating the parameters in a deterministic

component of known functional form from measurements of this com-

ponent which have been contaminated by additive noise.

The problem which wilI concern us in this note is the estima-

tion of the parameters of stochastic processes which are solutions of"

linear time invariant stochastic difference equations or differential

equations depending upon whether the process is defined for discrete

z



time instants or continuous time, respectively. For the class of

problems which we shall consider our problem is equivalent to esti-

mating a finite set of unknown parameters appearing in the correla-

tion function or power spectral density function of known functional

form from observations made upon the process.

Before discussing the general case it will be helpful to consider

one or two specific examples. We shall first assume that we are ob-

serving a time series x at equally spaced instants in time and that it
n

is known that x satisfies the following first order stochastic difference
n

equation

Xk = CXk - 1 + ek (I)

where c is a positive constant less than I and the ek are independent
2

gaussian variates with zero mean and variance o- . On the basis of
e Z

observing Xl, .... XNWe wish to estimate the quantities c and o-e .

Successive iteration of equation (I) shows that we may write:

k-m- 1

k-m I ix k = c Xm + c e k - i (2)

i = 0

If Icl'= ithen we have a stable system in the sense that values of x as
m

m --- - co have a vanishingly small influence on xk so that setting

m = -co in equation (Z) yields
%.

Co

v" i
= L c i (3)

i=O

From (3) we see that since x k is a linear combination of gaussian

variates that x k must be a gaussian process. Moreover, since

IE(ek) = 0 for all k then E_x.l<_l= 0 also, so that the structure of the

time series x k will be completely determined by its autocovariance

function.

Z
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We now derive an equation for _x (r) where _x

function of x for some integer lag r. By definition:

is the autocovariance

O

GO O0

S  ci+J
= 0 i = 0

E (ek+ T-i ek-i)

But since the ek are zero mean and independent

t"

E Lek+T _j ek_ i
Z

= 6. o-
1, j-T e

so that

03
2i+T

6x(T) = >_ c o-e
i=0

(4)

(5)

(6)

2
Since o-

x

1 ) T 2= z c % (7)
i - C

= 4x(O),we see from (7) that

' 2z Z/l- c
O-x = 0% i (8)

so that knowledge of c and _2 gives us complete distributional know-

ledge about the process x .
n

2

To esti_-nate c and _e given the observed values Xl,...XN, we

proceed as follows: Since the quantities e kare identically distributed

gaussian variates, the joint density of _2'' "eN may be written

N

L(e Z,. e N) = _ 1 1 7
.. (2_r)NU_ o_N- I exp _ ek 2n • 2o- z (9)

n k=2

3



or from equation (1):

L "- exp

N

2_:q k=2

(xk - cx k _ I)2 (I0)

^ ^ 2
The maximum likelihood estimates c and o-

, e

from the solution of the equations:

2
of c and o- are obtained

8L 8L

= 0 and
ao-e2

= 0 (II)

and are easily found to be:

N

XkX k -I
t, k=2 '\ 2
C = O-

/. (Xk-1) 2

k=2

N

1 \--' ^ 2

N- 1 ?. ek

k=2

(12)

where
A A

e k = x k - c x k . 1 (1.3)

A ,,, 2_
The distribution of the estimators c and o- is difficult to calcu-

e

late explicitly because of the correlation between successive observations

^ z/%2on the x process although the distribution of _ is approximatelyn

chi square with N - 2 degrees of freedom. It is, however, known that in

the present case, e.g., ref. (i), the estimators cA and o-e are asymptoti-

cally with N, jointly normally distributed with a covariance matrix given

by:

4



 (02,o ,\0c0o2
e /

\

-1

i
i

I
!
I

/
/

I (14)

Differentiating equation (I0) logarithmically and taking expected values,

it is a straightforward task to show that:

O

and

I
d

E t
I

E :

t

821ov L i N-1

2
ac Z ] 1 - c

a21oq L _ N- I

a(%Z) 2 ) = 2 %4

)

/ a21og L ) 0z i aca% z =

(15)

(16)

Thus equations (14), (15), and (16) reveal the interesting fact that the
A ,A 2

estimators c and o-e are asympto_ically independently distributed as

gaussian random variables with

Var AC

2
l - c

N

4
A 2 o-e

and Vat % _ N/-2

(17)

respectively.

5



Knowing that the form at the autocorrelation function is given

by {7), it is reasonable to estimate this function by

ATA 2.

_(T) = ^z (18)
| - C

Now by replacing c and _e in (18) by their values as given in equations
^

(12) and (13), we may obtain an expression for _(T) as a function of the

observed data. It is interesting to note that no matter what T is that
^ th

the estimator _(r) depends only upon the zero and first order average

lagged products of the observation.

As a further illustration of the additional simplicity afforded

by the assumption that the observations satisfy an autoregressive equa-

tion, it is of interest to note that the variance of the correlation rune-

tion estimator (18) is approximately

.T,( )Vat 6(T) .v O-4 C 2c z

-- e N T + i_cZ

Comparison of this expression with the variance of the lag product

estimator given in note (3) shows that the a priori knowledge that the

process satisfies a given stochastic difference equation can be a very

powerful piece of information.

It is important to realize that the particular manner in which
A

the data is processed to obtain the estimator c as given by equation {12)

depends upon our assumption about the gaussian nature of the residual

process e k. To illustrate this we shall consider the problem of deriv-

ing the maximum likelihood estimator for the parameter c for the

case where the ek quantities are independently and identically distri-

buted according to a Rayleigh distribution law. That is instead of hypo-

thesizing a gaussian distribution, we assume that the probability density

function of each ek may be written:

Z
ek ek

f{ek) : 0-r exp- ek> 0
(18)

= 0 ek<_0



where we assume for convenience that the parameter e of the residual

process is known and need not be estimated from the observations.

Again we assume that our sequence x satisfies equation (1) and
n

that we wish to estimate c on the basis of observing Xl, ... x N for sore6

positive integer N. Using (1) and (18), and recalling that the ek'S are

independently distributed, we may write the likelihood function of the

observed data as:

N

N (Xk " CXk- 1) 1 _-_
L(xI,...x N) = exp L

klt=z eZ zezk= z
(xk - cxk _ 1)2.

(19)

or more conveniently:

N N

. i)z1 Xk " CXk - 1 I \--"(Xk_CXk_
log L (Xl,...x N)= log oN - 1 ÷ log 0 202

k= Z k= Z

(zo)

To obtain the maximum likelihood estimate for c, we wish to choose
A

the estimate c as that function of the data Xl,... x N which maximizes

(20). Thus setting

8 log L
= 0 (21)

ac

and performing some simple algebra, we obtain:

k=Z

N

+ --_ xk _ l(Xk- _ 1) = O.

Xk " CXk - 1 0 k= Z

(22)

^

That is, the maximum likelihood estimator c is obtained by solving (22)

for ca as a function of the observations Xl,... x N and the assumed known

constant 0. However, from equation (22) we see that in order to ob-

A Nthtain the estimator c, it is necessary in general to solve an degree

polynomial equation which cannot be done in closed analytical form

when N is large. 7
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• A
Even though a closed form expression for c may not be ob-

tained from equation (ZZ), it is not difficult to show that the estimator

given by (12) in the gaussian case is not a root so that we conclude that

the form of the maximum likelihood estimator for c depends upon how

the ek are distributed.

Somewhat more generally, we now assume that we are observ-

ing a discrete time series that satisfies a linear autoregressive scheme

of order k. Specifically we assume that the nth observation satisfies

the equation

k

x = y a.x + e (Z3)n _ j n-j n

j=l

where the a.'s are constant and the e's are independent zero mean gaus-
J 2 n

sian variables with variance cre . There is no real loss of generality in

assuming the en quantities to have zero means, but it does afford a

certain notational advantage. To obtain an expression for the autocor-

relation function of the x process, we multiply both sides of equation
n

(Z3) by xl where 2 is some integer less than n to obtain:

k

= _ a. x2x n ÷ e (2.4)xlx n j -j xl n

j=l

f

Taking the expected value of equation (24) and noting that since i <n

that xI and en are independent, we obtain the following equation for the

autocorrelation function:

or

k

_(n - l) = F ai't6(n -._ - j)

"" j=l

k

6(n - l) - _.. a i 6(n- ._ - j) =

j=l

0

(25)

8



Replacing n - J[ by i we see that from (25) the autocorrelation function

of the observations must satisfy the k th order constant coefficient dif-

ference equation given by:

k

6(_) - __- aj6(_ -j) = 0 (26)
j=l

%

It is perhaps worthwhile to note that if the random function is

observed in continuous time and is known to satisfy that k TM order con-

stant coefficient stochastic differential equation given by

k

_. aj dj x(t)----r

dt J.
j= I

+ x(t) = e(t) (z7)

where the e(t) are independent random pulses, then the correlation

function for the continuous time process satisfies the homogenous dif-

ferential equation given by

k

dj
---._(t)

J dtJ
j-I

+ _(t) = o (28)

Thus for example, the equation for the angular displacement of a pendulum

in a turbulent fluid is usually assumed, for small displacements, to

+ satisfy the stochastic differential equation

__ dO
dZe + Ze-6_-+ (w0Z + d2) e (t) = l(t)
dt2

where I(t) is the impulsive random exciting force per unit mass.

correlation function _(T) will then satisfy:

(29)

The

2
6"(v) + 2_5'(T) + (Coo + j2)6(T) = 0 (30)

9



and hence will generally consist of exponentially damped sinusoidal

functions.

Returning to equation (26) for the discrete case, we know from

the theory of difference equations , ref. (I), that the autocorrelation

function 6(I) may be written

k

.r. (31)6(_) = cj

j= I

$

where rl,.. rk are the distinct roots of the polynomial equation

k

k
-->_ .rk " J = 0 (3Z)r - __ aj

j=l

and the c.' terms are to be determined from appropriate initial con-

ditions. If equation (3Z)has repeated roots then equation (31) must be

modified somewhat. For example, if the root rl were a double root,

all other roots of (32) being simple, then (31) would be written:

k

6(I) = (cI + c2_) r I + c.r. (33)L_, JJ
j=Z

It is of some interest also to investigate the nature of the power

spectral density function of a discrete time process x satisfying (23).n

If_ denotes the difference operator such that Ax. = Ax. 1' then equa-J J-
tion (2.3) may be written as:

10
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J

%
T,x -" e

n n (34)

where: k

L = 1- _a.A jJ
j=l

Since L is a discrete time, constant coefficient linear filter,

frequency response function is given by

its

y(_) k

S'-' i_j
L a. eJ

j= l

(35)

O

Z
so that s'ince the e are independent with variance o-

n e

density function of the x process is:
n

1 cr

P(_) = 2_ [ lI'Y'lo" 1'2 - _ <_io <__-¢

the power spectral

(36)

The angular frequency may be limited between - Trand w in (3.6)because

we have tacitly assumed dimensionless time. If, however, the time be-

tween observations isZ_ seconds, then the power spectral density function

should be written

where f is frequency in cycles per second.

The significant thing about equations (37) and 31) is that both the

correlation function and the power spectral density function of the x

process are known for any time lag or any frequency once the constants

ai,.., ak are known, thus when we know that our process satisfies an

II



autoregressive scheme of a known order, the problem of estimating

a functional of a random process such as its correlation function re-

duces to th'e much easier problem of estimating a finite number of

parameters.

We shall conclude by deriving the equations for the estimators

of al, .., a k together with an asympotic expression for the covariance

matrix of the estimator errors. _Ve assume that x satisfies (23) and
n

XNhave arethat Xl,... been observed where N>>k. Then since the en

gaussian and independent and if L denotes the logarithm of the joint
/

density function of the data and if we .._s.._._.._1-"+inessential constants, we

may write:

N k

L = I (Xn" I aj xn- j)Z (38)

n=k+l j= 1

The maximum likelihood estimates _j, j = 1, ... k are those functions

of the observed data which minimuze (38).

Thus differentiating (38) with respect to al, a2,...a k and equat-

ing the results to zero, we obtain the following system of equations

for the estimators:

.X a. " X X
Xn- x n-j 2 ___ n n- j

i= 1 n= k+ 1 n= k+ I

(39)

for j = 1,...k.

The system of equations given by (39) may be conveniently written in

vector and matrix notation as:

A

ca = b

IZ



where

^
a

/ ^1
, a 1

\ ^
_ a k:%

/ x \
,.. / Xnn-l

/

n= k@ 1
/
A
J

t

b - '

t

i

N

\n- k+ 1
x

.th
and where c is the kxk square matrix whose i, j

/
!

X X Inn-k/

/

(40)

element is given by

N

• oN

cij = Xn- J n - i

n= k÷ 1

With this notation, the expression for the estimator

may be written:

(41).

A
vector a

^ -Iba = c (4z)

Comparison of the equations (39) through (4Z) shows that the estimators

of the parameters al,.., ak, and hence the estimators of the correlation

and power spectral density functions will be functions of the sample

mean lagged products of the observations with lags hanging from 1 to k.

Now the estimator vector is a non-linear function of the ob-

served data so that it is a rather difficult problem to calculate expres-

sions for the variance and correlation between the estimator errors
A

exactly• However, since the a. are maximum likelihood estimators, it
I

is relatively easy to compute an exprrcssion for the asymptotic covariance

13
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matrix of the estimator errors because of a well-known theorem which

states that under fairly general conditions , ref. 2, the covariance

matrix of the minimum likelihood estimator errors is approximately

.th
given by the inverse of the matrix whose i, j term is

o2L )- E _)'/'?_j where E is the expected value operator and L is the

logarithm of the likelihood function. The approximation becomes exact

in the limit as the number of observations tends toward infinity.

Since the logarithm of the likelihood function of our sample,

including the constants, may be written:

O

L ..

82L

Computing _?_._-_-.
i j

N k Z

( )
2 2_ro- 2-0- 2 L_. n _ _, J n - j

e e n= k+ 1 j= I

from (43) we obtain

(43)

N

82L 1 _--'

_a.Oa. = Z /_ Xn ix- n - j
x j o-e n=k+ I

Thus taking the expected value of (44) yields:

(44)

E [ 8ZL

k 8a.Oa.I 3

N

I N-kl 6(i - j) - ---2 4(i-j)=
o- cr

e n= k+ 1 e

(45)

where 6 is the autocorrelation function of the observed process. Since

the asymptotic expression for the covariance matrix of the estimator

errors is the inverse of the matrix whose i, jth element is given in

14
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%
equation (45) we finally have:

. Z -.1

N-k.

(46)

O

Summary:

In this note we have attempted to show how certain kinds of a

priori knowledge of stochastic processes can greatly reduce the problems

associated with the estimation of certain functionals of the process such

as the correlation function or spectral density function by reducing

the problem to one of finite parameter estimation. In addition to the

practical advantages afforded by this information, we also obtain a cer-

tain theoretical peace of mind since stationary random processes

which satisfy linear difference or differential equations are ergodic,

ref. (3), so that time averages are legitimate estimates of distributional

averages of properties of the functions.

Furthermore, many of the remarks we have made are also true

when the x process satisfies an equation such as (23) where the e are
n n

no longer assumed to be independent but merely samples from a sta-

tionary process with known statistics. In this case, the difference or

differential equation satisfied by the correlation function will no longer

be homogeneous, but aside from this analytical inconvenience, the same

basic approach should still be fruitful.

15
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APOLLO NOTE NO. 205 H. Epstein

12 May 1964

THE IMPLICATION OF JPL PUBLISHED ACCURACY DATA

ON ATOMIC STANDARDS

JPL has made available some experimental results 1-/concern-

ing the errors present in some atomic standards evaluated for use

with the DSIF. Results are available both for Atomichron and Rubidium

standards. The Rubidium standard data is the data of interest for the

Apollo mission. This data is of further importance in assessing the

error contribution of the frequency and timing reference on presently

available measurement made by the DSIF. Tables 1 and Z below indicate

the numerical values obtained by JPL.

Table 1.

Manufacturers' Specifications for Atomic

Frequency Standards

Type

Atomichron

Rubidium Standard

Long -term

I Stability

i .... ,

t 5 x
10

10-

-II
5x10

-term

!Stability Spectral Purity

x I0"I0(5 sec) ,

I
l(i '

i5 x I0 -I sec) iZ cps at Z4 kMc

i/
Space Program Summary No. 37-17,

1 October, 1962.

Volume III] dated



.............. [ .................... ....

Table 2.

Frequency Stability Measurements of

Atomic Frequency Standards

Measurement

50 msec average from

one period histogram

"_ 500 msec average from

ten period histogram

Atomichron

-10
+4.7 x 10

-10
+4.3 x 10

V4700 Rb

Standard

+5xlO
-ll

-ll

'_" 5 sec average from

hundred period

histogram

_'_" 8 rain average from

Analog Spectrum

Analyzer

,-_40 min average from

Digital Spectrum

Analyzer

-10
+l. lxlO

-10
+l. lxl0

I --

|

i

-I0
, +3.7x I0

+ Zx I0

+0.5X10-11!

+0.4xlO

T

-11
+0.4x10

Prototype
Rb Standard-

-11
+3x 10

-Ii
+ i.4x10

+0.4 x i0 II

-t
-11i +0. Sx10-11

f
":+0[5 x 10 11

Our experience here at The Bissett-Berman Corporation (after

processing data from manufacturers of Rubidium standards) has indicated

that fol- the running times (T) used that the standard deviation of the error

in running time (O-T) can be adequately represented by the following

simple expression.

Z a+bT+cT 2
O-T =

Frequency errors (Z_f) can be related to time errors (AT)

by the following expression.

_f AT
.y- -



_f
The values indicated by 5PL are values for _ . These

values indicate the total errors for both clocks. If equal errors

can be associated with each clock, the variance for a single clock

should be reducedby a factor of i/2. At the present time, for

frequency standards of this quality, it is only possible to refer to

relative frequency or timing accuracy. The total o-T divided by

T is indicated in Figure I. The quantity ZT is used in place of T

for graphical convenience• A simple empirical curve which fits

the data reasonably well is given below. (This function is the

solid curve indicated in Figure I).

°-T -11 / 1
-._--- -- lo 'V T _'_-

This approximate expression will be used to calculate associated

timing errors (O-T) , differential range errors (O--Al_), and range-rate

errors (o-_). Running time of interest at this time are I, I0, 50, and

60 seconds. The average wavelength for the L-band DSIF is about

3Z. 5 cm. o-_R and o-_ are given for the two-way doppler mode. The
1

values obtained can be reduced by a factor of -- if the measurement

errors are attributed equal to both clocks. Nunacrical values are

indicated in the table below.

Table 3.

Effect of Clock Errors on L-band DSIF

T

(second}

1

10

i so

60

(seconds}

-Ii
l. lxl0

-II
5.5x i0

'I0
2.3x i0

-I0
2.8x i0

I
I
I

i

(cm)

.16

•8Z

3.5

4. Z

(cm/sec)

.16

•08Z

•071

•070



,



Apollo Note No. 203 indicated that the differential range

error due to random quantization noise was 6.64 cm for the L-band

DSIF. Recalling that the tabular might well be reduced by a factor

of about .7 when one clock only is used, it can not be noted that this

type quantization error well dominates the clock error for running

time less than I minute. Improved techniques to reduce quantization

errors should be accompanied by improved techniques to reduce the

effect of drift error in the present atomic standards. These results

indicated that for long running times a low frequency drift rate is

the dominant clock error source.
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.APOLLO NOTE NO. Z06 H. Engel/
H. Dale

19 May 1964

SOME PRELIMINARY ESTIMATES OF THE UNCERTAINTY

OF THE STATE VECTOR DURING LUNAR ASCENT

USING THE SCHMIDT-KALMAN TECHNIQUE

The Schmidt-Kalman program is discussed in Apollo Notes

192 and 193. The basic computer program has been writtert and

this note presents the results of some preliminary trial cases.

These cases tend to be simplified such that the effects of various

errors may be compared. Thus in one case, gyro drift errors were

assumed to exist while accelerometers were assumed to be perfect;

in other cases, the accelerometers were assumed to possess varying

amounts of noise while the rate gyros were assumed to be perfect.

Due to the rather long computing time required for each data interval

(about 4 seconds of computing time for each one second interval of

flight} only short portions of the 397 second actual trajectory were

used. Later work may consist of combined errors and longer flight

tim es.

The _ and M matrices of Apollo Notes 192 and 193 depend upon

the trajectory. The trajectory used is based upon curves fitted to a

NASA trajectory.

Moon

\ ,
rx w

Earth

Y



0

The NASA trajectory is (in ft/sec.2).

0 , Ozz_ t_'_ 8 sec.

8.55 + 0.02.7t , 8<_t =_ 597 sec.

6 , 0 --:.=_t ___8 sec.

1.64 - .0092t , 8_ t_ 325 sec.

=1.26 , 325 --_t_ 397 sec.

0 , 0 < t < 8 sec.

I.08 x 10 -6 (t-8)2 rad/sec., 8 "_ t "_ 397 sec.

0 From this the thrust components of acceleration in the Earth-

centered inertial frame may be written (expressed in meters/sec. 2)

a
x

= _" 6 - p" - g

= .[-II.32] .3048

F-s.96 +
L

, where g = lunar gravitation

for 0--< t'_ 8 sec.

•00905 t + 8.8 x I0=6 t2 + 2.9 x 10 -8 t3]

for 8 -----t _ 325

.3048

-4.06 - 1.5 x lO'4t + 8.8x 10 -6 t 2 + _.9 x 10

for 325 <--t _--397

=8 t3]
.3048

0
Z
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a
Y

= _' _ + _"

= 0

[8.55 +

['8.55 +
L

for O_ t 48

.027t + 7.7 x lO-6t 2 - lO'8t 3]

for 8"_ t < 325

• 027 t + 4.39 x 10 -6 t 2] . 3048

for 325 "__t "___397

•3048

a = 0
z

0

From these thrust components, the 6 matrix may be generated.

This matrix is the same as shown in Apollo Note No. 193 with 7, the

interval between samples, taken as one second. This matrix is

shown on the next page.



o
The _ Matrix

1 0 0 1 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 --_--_ • _

0

-a -a

0 --Y--Y 0 0 --6Z-2

a a

0 x 0 0 xz W

-a a -a

x 0 --Y-,-- xz o ---6- 0

0 0 i 0 0 0 0 -a
Y

0 0 0 0 1 0 0 0 a
X

0

-a

0 0 Y
Z

a
x

0 0 ---2-

a -a

0 0 0 0 1 a -a 0 Y _ 0
y x 2. 2

O
0

0

0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 -0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 0 0 1

The velocity in the inertial frame may be generated by integrating

the total acceleration.

@
r

.
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0

t
p

= JO (_'' _ - _'') dt

= - 6t for 0 "¢ t-¢ 8 sec•

= [-35.1 - 1.64t+.OO45Zt2+ 2.9x 10"6t3 -.7Zx lO'8t 4]

for 8_ t-_ 325

= f-494.3 + 1.26t - .73 x I0
[

= d -- 0

-67,5 + 8.55t +.0135

.3048

-4 tz + Z. 96 x 10 -6 t3 +.73x lO'8t 4] .3048

for 325__ t __ 397

for O--< t_ 8 sec.

t2 + •62 x lO-6t 3 - .25 x lO'8t 4]

for 8 _ t _ 325

•3048

5 + 8.55t + .0135t 2 - .454 x lO.6t3j 1 •3048

for 325__ t __ 397

= 0 for all t

Integrating the velocity components gives position.

t

x = fO xdt+x°

= .38x 109 - 3t z for 0_< t-= 8 sec.

38x 109 + .3048 I140.4 - 35. It - .82t z@

im

• ]+ .OO15t 3 + .72 x 10 "6t 4 + .144x lO "St 5

for 8 <__t -_ 325 5



0

0

x

Y

t

S0

•38 x 109 + .3048 [ 48,344.1 - 494.3t + 63t 2

-24.3 x lO'6t 3 + 73.2 x lO-8t 4 + 14.6 x lo-lOt 5]

for 325 _t _397

._rdt = 0 for O__ t _ 8 sec.

F "
+ 4.275t 2 lO'4t 3 lO'6t 4

[z64.167st +4s x + 15sx

-.0313 x I0"8t 5] .3048 for 8 < t -_ 325

[-4271.3 - 58.5t + 4. Z75t 2 +4.5x 10-3t 3

t4I
-ii. 35 x I0 -8 .3048 for 32-5 __ t _ 397

z = 0 for all t

The position of the three radars are assumed to be on the

vertices of an equilateral triangle:

Xl' YI' Zl

x2' Y2' z2

x3' Y3' z3

O, 2.4 x 10 6 meters, 0

1.2x 106

-I. Z x 106

Now the range from each station to the vehicle is

z xi)Z yi)z= (x + (y - + zz i = 1,2,3ri ,

which allows the measurable, range-rate,to be expressed.



O

i r.
1

(x - xi) k + (y - yi )
, i= 1,2.3

Now the components of the M matrix are: (showing only non-

zero terms of a 3 x lZ matrix)

k _'1 (x-x 1) x-x z

M!.I = rl r_ MZ4 rz

.._ . i"l(y-yl) , = Y'Yz

MIZ = rl r_ MZ5 r2 "

k 1 z 1 "z2

M13 = _ M26 = rz
r 1-

x - x 1

O M14 = rl M31 = r3

i.3 (x - x 3)
2

r 3

Y " Yl

MI5 = _-rl M3Z =
/

r3

i-3 (y - y3)
Z

r 3

-z I
M33

M16 = r I

_3 z3

Z
r 3

k _z (x - xz)
= _ " Z M34

MZ1 r z r z

X - X 3

r3

_k_ - i'z (y - yz)

MZZ = rz r_ M35

k 2 m2

M23 = Z -
rz

Y " Y3

r 3

-z 3

M36 =

7



I .........................................................................

The Q matrix used in this program assumes a one sigma

error in the measurable, range-rate, of 3 cm/sec. Thus the only

non-zero elements of the 3 x 3 matrix are:

QII = QZZ = Q33 = ("03)2 = 9 x 10 -4 mZ/sec 2

The P matrix describes the a priori uncertainty in the estimators

involved in the problem. The initial position is assumed to be known

with an uncertainty of l0 meters:

Pll = P2g = P33 = lOZmeters2

The initial velocity of the vehicle is in fact zero and this is

known. Thus, all other terms of the P matrix up to and including

P66 are zero. The one sigma error in the position of the platform is

8 mils in each axis:

P77 = P88 = P99 = 64 x 10 -6 fads

and the one sigma error in the rate gyros is known to 1 rail/see.

a priori, corresponding to use of the autopilot as an attitude reference:

I0 -6 radZ/sec z.
PIO, IO = Pll, ll = P12,12 =

All other terms are zero.

In the first case to be studied, Data Set 1, no aceelerometer

errors were assumed to exist, thus the _ and 1% matrices were not

used.

In the next four eases, accelerometer errors were studied

under the assumption of no gyro drift rate. Thus for these cases the

estimator matrix is reduced to a 6 x 6 since no _ or @ errors would

8



O
exist. As a further consequence of this, the 6 matrix is reduced to a

6 x6, the M matrix is reduced to a 3 x 6 and the Pmatrixis reduced

to a 6 x 6. However for these cases ofaccelerometer random error

the covariance matrix of these errors, R, must be used. Only

diagonal terms of R are non-zero and express the variances in the

three orthogonal accelerometers.

Case Accelerometer Error I Rll -- R22 = R33 =

P 2 2 meters/sec 2 ] 4

P3 1 1

P4 .5 .25

P 5 .2 .04

Case P1 was run for 150 seconds while P2 through P5 were run

for only 15 seconds.

Results

For the case of gyro drift without accelerometer error, Pl,

the Figure 1 shows that the x and y error remain constant at ten meters

while the out-of-plane component grows to 70 meters by 150 seconds.

It would appear from the shape of the curve that the z component
%

might grow to about 140 meters by burnout. In any case, no real

problem appears to exist in position uncertainty.

Figures Z and 3 show the uncertainty in velocity components

for case Pl. Figure 3 is probably the most meaningful curve of the

bunch, showing that the velocity error, which is almost all in the

out-of-plane component, tends to stabilize after about a minute to a

value near a meter per second. This number should scale with the

assumed error in measuring range-rate, 3 cm/sec for this case.

Figures 4 through 7 show the uncertainty in angle and angular

rate of the platform for the PI case. It would appear that although the

drift rate uncertainty may be held to within one mil per second, the

9
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O

uncertainty of vehicle attitude tends to grow with time and were it

not for the crew or other attitude acquiring device, future boosts

could not be made on the basis of MSFN obtained attitude data in a

S traightforwa rd m anne r.

Figures 8 through 13 show the cases P2, P4, and P5 for

which accelerometer errors are assumed to exist without gyro drift

or initial platform angular error. 2k mistake was made in the data

inputs for P3 and thus this case is missing. What is interesting is

the fact that the major velocity error will again be in the out-of-

plane direction. The _ error will never get larger than_ times

the range-rate error or .017 meters per second. For the case of

2 meters/see. 2 random accelerometer error, P2, the maximum

velocity error k 2 + _r2 + _ of about 3.8 meter per second

2
is reached by I0 seconds. For the case of 0.5 meter/sec, random

errors in the accelerometers, P4, the maximum velocity error

appears to be near 2. i meter/see, occurring after about 18-20 seconds.

Although not enough time was studied, it would appear that by reducing

the accelerometer errors to 0.2 meters/see 2 the affect of accelerometer

errors would approximate the affect of the gyro drift errors studied,

i.e., the total velocity uncertainty might be held to about a meter per

second.

Future runs might include combined gyro and accelerometer

errors for flight times longer than 15 seconds.

I0



0

0

11

,.Y__,
-I,"4

Ci
0
1,,,t

0
I,!,-i

0

Ul-,

o;

0 0

o

;4

N



}2



0

1"/.



I
• _ I

I ..... .,+.... +--.-:-i ........... ! .....

! I 1 I t I ,

........ I_!_;:!T. ! " _:i :i.:. '.! I , , , , . , '

. _ :;:,.
I'NI "l''

' ......... j---'" 1 :'" rt_ T

i:: L:t 1+ Ii+;
-,' ' "+ ''l ' I `+_ l +

: ' 1' + ' ",t'I <' '

0
,..-4

I:: 0

I-.+

_m

'-"B
l:h o
,I) I-.+

oi-I

"_ o

v _

oe,t

ul

14









0

0

o

o

°"4 0

I:_,._
X._

0

18



19





i

21



0

22



0

0

i:



The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

O

APOLLO NOTE NO. 207 L. S. Lustick

18 May 1964

EXTENSION OF S CI-EvIIDT-14ALMAN METHOD

FOR AUTO-CORRELATED DATA

Purpose

The purpose of this note is to indicate how the Schrnidt-IKalman

method can be extended to include cases when the measurable is

auto-correlated.

O

Method

Consider a random sequence of numbers generated by the

auto-regressive model shown in Equation (i).

q

= _ k.e..+_ei j 1-j i

j--1

(i)

where:

_. is a zero mean gaussian variable.
I

_i _'l+m = 0 m¢O

Z
= O_ m=0

The noise for this process is said to have order of dependence

q (see Apollo Note No. 202), and with proper choice of k. can represent

infinite memory randomprocesses. The SchmidZ-Kalmanmethod

will be illustrated using an order of dependence equal to one.

The correlation function for an order of dependence one (q=l)

is exponential as shown in Equation (2).



0
Pn = K Pn-1

Let:

A
a

o
a priori estimate of state vector

a 1 = 61,

A
a

o o
= . estimate of state vector at time,

based on a priori state vector

t 1

A
a2 = 62, o ao = estimate of state vector at time,

based on a priori state vector

t Z ,

_I, 54a = errors in sta;c vector at time, tl,6el = o o

based on a priori state vector

0

A

6az = 62,o 6ao = errors in state vector at time, t2,

based on a priori state vector

Yl = predicted measurable at time, t Z- k predicted measurable at time, t 1

- [ measured value attime, t2- k measured value at time, tl]

Yl Z6Z, o.aAo ->'MI%1,o o

p-

m 2 - km 1 ]

5yl MZ 6Z, o-X M1 $1, o ao

where:

M

m

matrix that transforms state variables into

measurable

values, o_ measurable Z



O
IT 61 ' ^ TAll = 6 a I 6 a = coy (ao) 6O I,o

^ r

A1z--6_i6y_ - _i.o_ao [¢Mz_Z.o- k M 1 T61, o) 6a o _

[ iTAlZ = 61, 0 coy (aAo) M i 6Z, ° - XM 1 61, 0

Azz= _YI6Y_ : _[Mz6z o-, ×M16l, o]

aA [ - kMcoy ( ) MZ _Z, o I

7T T

I,o J + _l,Z _l,Z

O

A

a I

A

a I

estimate of state vector at time tl, subsequent to

the measurements at time t Z and t 1

61, o ao IZ J
Fundamental Theorem of
Schmidt-Kalman Method

6_18_ = All - AIZ AZZ I AZl

Recursively

A

a2 = 6Z, I al

a3 = _63, 1 al

predicted state vector at time, tz, based

on updated orbit parameters at time, t 1

predicted state vector at time, t3, based

on updated orbit parameters at time, t 1

6at : 6Z, 1 6_i



O
A

§a3= 63,1 _al

[ - _]Y2 - M3 _3, 1 _1 klM 2 _Z, 1 al

[ ]^8Y2 = M3 _3, 1 - kM2 _Z, 1 6al

A T
All = 8az 8aT = 6Z, i coy (al) 6Z, 1

_T

@
T

+ _z, 3 _z, 3

-_T

I -kmz6z, 11

A -I

A2 = _2, 1 al - AIr AZZ YZ

@

In the manner described above we can recursively define successive

estimates of the orbit parameters. This same procedure can be extended

in a similar manner to higher orders of dependence, q.

The case for finite memory is not illustrated but can be handled

in _ straightforward manner.

4
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Check on Method

Consider the problem of estimating a constant given three

measurements ml, m 2 and m 3 assuming that the noise is related

as shown in Equation (1) (auto-regressive model-first order dependence).

Following the method described in Apollo Note 202, the

likelihood expression is as shown in Equation (3).

(3)

0

2 2

8.F_ = 0 = (l-k) (m z - kml) + (m 3 - km2) - 2 (l-k) 2 a L a +

0 0

Solving this equation for a, we obtain

A
a
o

2. (l-k)[(m 2 kml) + (m 3 km2) ] + 0_2. A°_ ° o
a = (4)

2
z (I-×)z _z + °-F_

0

Alternately solving the same problem with the Schmidt-!_alman

procedure described previously we obtain:

2 ^ o_2a + (l-k) - kml)a _ o (m2
0

al = )2 2 (5)(l-x + %
2

0

0
2

0-_

a I

2 2

0

(l_k)2 .o_^2 + 2

0

(6)

5
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Re curs.ively

4
a2

2 ^

o-_ _1 + (l-K) a-_ 2 (m 3 - kin2)
a 1

(l-k) 2 ¢r_21 +

(_)

Substitution of Equation (5) and (6) into (7) gives

a2 =

2 (l-k) (m 2 - kml) + (m 3 - kin2) + o_ a°

2 (l-k) 2 0-^2 + 2

0

(8)

0
The expression for the estimate of the constant with the

same data is identical (comparison of Equatior_ (4) with Equation (8).

6



The Bissett-Berman Corporation 2941 Nebr_ka Avenue, Santa Monica, California EXbrook 4-327

APOLLO NOTE NO. 208

A CALCULATION PROCEDURE FOR OBTAINING

COVARIANCE ELEMENTS FOR MANY

TRA CKING S TA TIONS

C. Siska

21 May 1964

I. Introduction

A customary method for obtaining the covariance matrix is

to process the tracking data for many stations in a "simultaneous"

fashion. That is to say, if there are J orbital parameters (orbital

elements, gravitational constant, etc. ) common to Q tracking stations,

each with M unique station parameters (location, bias in the measur-

ables, clock rate, etc.), obtaining covariance elements for the orbital

parameters leads to the formidable operation of manipulating a

J + Q x M square matrix.

An alternative procedure for obtaining the covariance elements

for the orbital parameter is to process the tracking data for each

station "sequentially. " In this method, we process the data for the

first station, which means manipulating a J + M square matrix, and

then use the J x J matrix for the orbital parameters as a priori infor-

mation to the second station and so forth. In this way one manipulates

at most a J + M square matrix, and after a sequence of Q stations,

one obtains the same J x J covariance elements for the orbital pa-

rameters as the "simultaneous" method. The "sequential" technique,

however, does not yield the same estimates for the station parameters.

In the following, the equivalence of the two methods in obtain-

ing the J x J covarianee elements is shown, and two procedures are

indicated for correcting the estimates of the station parameters

obtained by the "sequential" method.



0
Z. "Simultaneous" Procedure

To recapitulate briefly, the maximum likelihood technique

minimizes the weighted sum of the squared errors as follows (for

simplicity we take only one type of measurable and N measurements

per station),

rain. Q N

^' ZZaj, Xqm

q= 1 i= 1
mq(i)

^ ^ ^ 'm{2

- fq (aj, Xqm ,
i)A

0

where

mq(i) (i) th measurement of the (q) th station normalized

by the noise sigma o-.
q

fqA (aj,^ Xqm,_ i) = estimated value of mq(i) normalized by O-q.

A
a. = estimated orbital parameter (j=l .... ,J)

J

A
x

qm
= estimated station parameter unique to (q) station

(m=l .... M)

Differentiating the above function with a parameter u yields

the set of J + Q x M extremal constraints,

q=l i=l_

=0 (i)

$

where

U

fq(i) -

a I .... aj; Xql .... XqM; q=l .... Q

q (aj, Xqm, i) = actual value of the measurable

Z



Expanding Equation (I) to first order about the values aj, Xqm,

considering the normalized noise nq(i) = mq(i} - fq(i) to be first order,

yields the two sets of equations,

q=l i=l j=l J J m-I 8Xqm q 8ak

,. • = 0;k=* ....J (Z)

q= I i= I j= I J m= I qm 8Xpr

p=l...O

= 0;r=l...M

Note in Equation (3) that 8f(i)/_ _Xpr = 0 for p_q, and thus,

there are Q sets of equations, each set containing the M station

parameters of one station only.

Rewriting Equation (2.) in matrix form,

o o Q

q= I q= I q= I
.. ^ ,_

where the elements of the matrices Aq, iq, Cq, Aa, AXq are
I -N. 8fq(i) J x ImatrixAqk = nq(i) 8a k k-- I .... J

i-- I

Bqjk N JxJmatrixZ 8a.
i=l J j,k=l .... J

(4)

i -



O

Cqkm af(0-a2
i=l qm

aa k

J x M matrix

k= 1...J

m= 1... lVi

Aa = ; J x 1 matrix, j = 1.... J

^ i^ IAXq = AXqm ; Mx 1 matrix,
m= 1...M

In a similar fashion, Equation (3) yields a set of Q matrix

equations,

q=t...Q

where

Aqr =

N ° I
nq(i) fq{i)

0Xqr ii=l

M x 1 matrix

r=l... M

m

Bqr j =

N 5ii) 8f (i)
a_. ax_

i- 1 J qr

M x J matrix

j= 1;..J

r= I...M

C =
qrm

N af,(i) _ [
1

i- 1 qm

M x M matrix

rn, r=t...M

C T
q

4
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Solving Equation (5) for the station parameters yields

A _-i _ -I A

AXq = - Cq.' Aq - Cq Bq Aa ;_, q=l...Q (6)

and substituting into Equation (4),

Q Q

_. -I v--, -1 A(Aq - Cq C--q A--q) + L (Bq - Cq C-'q B--q) Aa= 0

q= I q= I

{7)

Manipulating Equation (7) ;;,ill yield the desired covariance

elements (Jx Jmatrix) for the orbital parameters.

Writing Equation (7) as

Q Q

_, Fq+ _ Gq A_

q= 1 q= 1

=0 (8)

the desired covariance matrix is (since G is a symmetric matrix)
-I q -I

Aa %T _ ; G
q q s. q

1 q- 1 s= 1 q= 1

(9)

Since nq(i) ns(J) = I, if q = s and i = j, and zero otherwise,
the middle term becomes

Q

Fq q ,

q= I

and in view of the definitions in Equations (4) and (5),

A
q

A
q

T
A

q
B

q

C
q

(lo)

5
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_- AT= _-

q q. q

A T
q q q

so that the following applies

II FT oqFq s =

q= 1 s- 1 . - 1

(11)

Thus, the desired result is

1_% _ar : Gq --
q= 1 q= 1

-, ,]-'

This equation is to be compared to that developed by the

"sequential" technique.

(IZ)

3. "Sequential" Procedure

In this procedure, the past tracking history determines an

a priori ombit and each station in turn updates the a priori with its

own tracking data. In this case, the maximum likelihood techniques

determines a function to be minimized which is also the weighted

sum of the squared errors but which includes the errors resulting

from the a priori estimate,

Thus, for the (q)th station the function is

min _ N

h i)] zXqm,

J J

j=l u=l

^ ^ (a_qu A )_(aqj - aq.l,j ) - aq_l, u



O

where

aq-1, j

A

aaA

a priori estimate for the J orbital parameters

for tracking data from (q-1) stations.

estimate for the orbital parameters including the

tracking data for the (q)th station.

• ^

Hq3. l(aq. u,j element in the inverse of the covariance

matrix (J x J) for the orbital parameter
h

estimates aq_l for q-1 stations (i. e., the

weighting factor).

The resulting extremal conditions are similar to Equations (2) and (3),

O 8a . _aqj + _ ax q _ q-I
i=l j=l qJ m=l qm aqk j=l

,L
(13)

k= 1...J

iN l_n J . MqCi)+_. _ Âaqj + _. afq(ilax

j= I m= I qrn
&Xq 8Xqr

r = I...M

(14)

Equation (14) is identical to Equation (5) for the (q)th station
A

with the solution for _Xq given by Equation (6).

7
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^ ^ ,_ ^ . ,_

If we write aqj - aq.1, j = (acl j - aqj) - (aqj_ - aq_l,jJ = Aaqj

and collect terms in Equation (13), then the result is similar to

Equation (4) without the summation signs but with the first two matrix

coefficients slightly altered by the a priori term. Specifically

Equation (13) becomes

(Aq; - Hq.1 Aaq_l ) + (Bq + Hq_l) Aaq + Cq AXq = 0

where I-I 1 is now the inverse of the covariance matrix (5 x J) for
w A

the orbital parameters for q-1 stations, with H defined as zero.
O

Combining Equations (6) and (15) leads to an equation similar

to Equation (8)or Equation (7),

A ^

(Fq - Hq_l Aaq.1 ) + (Gq+ Hq_l ) Aaq
=0

In a progression similar to the one which led to Equation (12),

we obtain the recurrence relation,

" "A ^ T
^ T (Oq + Hq.l )'I (O + H Aaq. AaAaq _aq = q q- 1 1 q- 1

(Gq + Hq.l )'IT

Starting with.the first station q=.l, we have, since H o = 0,

A_al ^ TAa] = Gi I

and therefore

HI= (_a 1 z_alT) "I = G I

A
- Aa

q-l,j

(16)

(17)

(18)

For the second station

a Z h T -I A= Aa 1Aa Z (G z + H I) (G Z + H 1 A_a T HI T) (G_. + HI)-
I T

8



and since Gq is a symmetric matrix, substitution of H 1 yields

kaz ka_ -- (Gz + Gl}"I (19)

After Q stations the result is

_aQ = (G I + G z +... = Gq

I

Equations (12) and (20) are identical, which shows the equiva-

lence of the two procedures in calculating the covariance matrix for

the orbitalparameters. The same result applies if more than one

type of measurable with various number of measurements is assumed

per station.

4. Updating the Station Parameters

The variance for the station parameters for the q(th)

can be obtained using Equations {6}, (7), and (I0) to yield

station

(zo)

[ "'1q q q q q
(Zl)

In the "sequential" method, the variance for the orbital

parameters in the second term is calculated using the tracking data

for the first q stations only, instead of all the Q stations.

To update the station parameters, consider the following

matrix equation for the (q)th station,

9
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X

fJ x J)

I

-g- ,I
q ,

I

C
q

(sx M)

m

C
q

(M x J)', {M x M)
I

a

(sx j)

C

b

(J x M)

d

(Mx J): (MxM)

0

The items of interest are matrices a and d which are related

to the first matrix elements as fo!!ows:

-I 1"Ia = X - Cq Cq Bq I

-I

d = C-'q i-% X -1 CqC--q

(Z3)

Note that the matrix a is the covariance matrix for the orbit

parameters using only the (q)th station data according to Equation (1Z),

i.e., defining X equal to B .
q

^
Letting matrix d equal the matrix AAx .Ax T

q q
requires that

in Equation (2 1)

• ., (I +B--q (_aQ _a_)--_-'qT' C---q = l-B-q
-I

X

-I

C C
q q

-1

(Z4)

Solving Equation (24) for the matrix X yields

-1
A

g C B
_ T

X = (__Q_a) -Bq q q (ZS)

<J I0



f

Since _-T = C from Equation (5), combining Equation (Z5)
q q •

with the first equation of Equation (Z3).with X defined equal to B
q

x _1l= -a +Bq

yields

(Z6)

Thus to obtain the updated station parameters defined in

Equation (21) we need to invert the following matrix and retain the

resulting lower right M x M matrix.

^ AT -1 -1

(_aQ _aQ ) -a

+B
q

(j x j)

B
q

(M x j)

C
q

(j x M)

R

C
q

(M x M)

3

where a

(

-1 is obtained by inverting the matrix

(

/ i

B ' C
I

q , q
I

(J x J) , (J x M)
I

I

1

!

I

B ' C
q , q

!

(M x J) , (M x M)
I

I

I

and 'then inverting the upper left J x J matrix alone.

x-

J

f
(

ll
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The Bissett-Berman Corporation

_J

2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. Z09 H. Engel
Z5 May 1964

ABILITY OF MSFN TO MONITOR LEM

IN POWERED FLIGHT, I
c-.

It appears that the only way in which the MSFN can detect any-
/

thing but a catastrophic_failure in the IMU-AGC is by comparison of

the IMU-AGC estimate of velocity telemetered from the LEM with

the velocity of the LEM determined by the MSFN radar alone. This

means that velocity errors of the order of Z cm/sec, in the direction

of the Earth-Moon line, and of the order of 5 m/see, in the two orthogonal

directions can be detected, using three MSFN radars in the three-way

Doppler mode (Reference Bissett-]Serman Apollo Note No.,198). The

particular values of detectable velocity errors are, of course, dependent
j

on the spacing Of the MSFN stations. • Y

Errors of these magnitudes in velocity at burnout would result

in misses at the nominal time of rendezvous using a Hohrnann transfer

of the order of

\

f

F

9 meters for a Z cm/sec, error in altitude rate

<\

c

1140 meters for a 5 m/see, error in velocity along track

_J

,'_0 meters for a5 m/sec. _error in velocity cross track.
L_ P,

J

The IMU g_ros have a nominal drift rate of 10 meru. A rough _

calculation, based on a velocity to be gained at 1500 m/sec, in a boost

time of 400 seconds, indicates that this drift rate would lead to a

velocity error of the order of 0.2. m/see, at burnout.

10meru 7.3 x 10 -8 rad 400, f ------_= 0. Z m/see.secmeru Z see. 1500 msec

J

t.,

3
? ,y (

J <j
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An error of this order of magnitud_e can be detected in one

Second by the MS_'N radar if hi the Earth-Moon direction, but not

in the two orthogonal directions. _

In order to obtain a b4tter estimate of the gyro drift errors
\,j

detectable by the MSFN we must perform a somewhat more sophisticated

analysis, such as that described below. 1

Let us _ssume that the on-board system has perfec t gyros and

perfect accelerometers up to some time, and then one gyro starts

to drift. Let us also assume, for the moment, that the vehicle is not

boosting and that its velocity is in the direction of the fixed inertial

direction y, common tO the MSFN and IMU coordinate Systems. If

at this time the IMU undergoes a sudden rotation as _ result of a gyro
F_

failure so that that platform axis th._t was in the y direction is now in
r

the y' direction, the on-board system still indicates that the velocity

is in the y direction, Since it is hot,realized thatth e platform has been
/

rotated. Hence, in non-boosting flight after this rotation the MSFN

and the on-board system will indic-ate the same velocity and _>position.

It is only when the vehicle boosts that a disparity occurs b_etween the

position_and velocity determinedby_the on-board system and by the

MSFN.

" Now let us see what happens in the case of boost. Let us assume

that the vehic!g _boost acceleration has a fixed magnitude a, and a fixed

inertial direction, and that at some time, wi_ich we shall arbitrarily

call time zero, a gyr6 with its sensitive axis perpendicular to the

direction of boost starts to drift at a fixed rate _. Then the llvlU sees

an apparent acceleration a_t normal to the actual acceleration and

computes a false
r-=

V

in this directio n .
t

estimate, V,

velocity, v,

awt z
a_ot _dt = --

Z .... " ) ,_

c

This velocity may be compared with the radar

of 'the corresponding component of velocity, which will

)

2
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O

have a mean value 0, since there is actually no boost in this direction.

The radar components of velocity are computed from measurements

of range change in a period T divided by T and modified by the station-

vehicle geometry, it is convenient, then, to express time in terms of

T. We have

t. = iT.
1

%

and

Then

a_T .2
vi 2 1

¢

V. = O+n.
1 1

in which n i is the ranclom error in V i due to radar noise.

Gyro drift is determined by comparison of V i and v.. The _

difference sl_ould be of the order of the RMS error in velocity,

o" = , determined from the radar measurements, so that if

v i - V i is Substantially larger than o-, it is an indication that there is

a systematic error in the on-board system or the radar. We assume

that the error is in the on-board system.

Simple comparison of v i - V i with a-, however, is not the

best we can do. We can detect smaller on-board system -errors if

we look at many s_uccessive values of v. - V.. Let us define,
r 1 l '

= v. - V i. _ _ )

f

Then 2
a_T 2

_i - _ _ i - n i

%

3

(



_l

• i

N is

The mean square value of
u

i over the interval i equal 1 to

N

Letting _ = -_-

i=l

r

2 2

]_, 2 _" - ni

f -

$

N 2

2)thenE_ N --_--i4+
i=1

J

which for N large,

2 2 4
a _o T

120

2
O--

(N+ 1) (2N + 1)

say larger than 8,'-_s

, , 4E a ¢_ v N 4 2= Z0 + o-

(3N 2 + 3N=l) + 0 -2

\

If we now consider a case corresponding to part of the LEM

ascent boost, with a= 5 m/see. 2' v = 1 see., and o- = 5 m/see, for

errors in the cross=range direction, we find

A
L

If we say we shall consider a gyro drift error detectable when

_'_ is as great as 2 0--2 , then we find that on the average

1.25 2 N 4 = 25

or

tad.
SeCo

<This is shown in Figure i.
J
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Thus for drift about an axis that is unfavorable for the detection

of drift, a drift rate of 200 meru can be detected in 10 seconas, or a

drift rate of 20 meru can be detected in 100 seconds.

A better way to look at the errors that can be detected is to

realize that substitution leads to

E
= --_ +O"

so that no matter what the drift rate. if we say that the

gz 2drift is detectable when is twice o- , then the velocity error

when the drift is detected is 2. 14oa In the case in which o--is 5 m/sec. ,

the error in computed velocity when the drift is detected is il.2 m/sec.

p '-Now,do we have to wait until is twice o- before we can
t.

decide that there is a gyro drift? In order to answer thi.___squestion we

must examine the uncertainty in the observed value of _2 Returning

to the original expression for _, we have -

N
1F: Z

i=l
(ac0T i 4 1 22 + _ ni

i- I

then

if n i is uncorrelated, random Gaussian with variance o --2,

E n i = o-

i= 1

_The variance in the observed value of _2 is 2 o-4/N. Thus,

if[_-2) z exceeds 0-4 by Z or 3 times Z o-4/N, this may be taken as

evidence of a gyro drift rate significantly different from 0. We have,

for N=_ 8,.

r3
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-_+cr
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4
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N

O

The error in velocitythat can be detected is, of cours e , pro-

portional to o-. One cannot guarantee with absolute certainty that the

observations do or do not indicate an error in veiocity. Instead, it

is necessary to state results in terms of the probability that an error

in velocity will be detected and the probability that we will think there

is an error in velocity when there is not (false alarm probability).

This has been done and is shown in Figure 2 for detection probabilities

of 0.70, 0.80, and 0.90, and false alarm probabilities of 0.01 and

0.05. In terms of the expected radar capabilities the figure indicates

that the following velocity errors can be detected with probability

0.90 and.false alarm probability 0.01.

Error Direction

Earth-Moon

Orthogonal

lO

Observation Time (sec.)

30 100

0. 086 m/sec. 0. 060 0. 041

14.3 10.0 6.75

It should be remembered that these figures have been derived

assuming a constant thrust acceleration. If the thrust acceleration

is time-varying, as in the actual LEM ascent, some small changes

in these figures will result.

7
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APOLLO NOTE NO. 210

SIGNAL- TO-NOISE RATIO AND

BIAS ERROR LIMITATIONS TO MSFN RADARS

H. Epstein

25 May 1964

In Apollo Note No. Z0!, it was shown that receiver noise does

not present a severe accuracy limitation provided that a good signal-

to-noise ratio is present in the spacecraft and ground-based radar

receiving phase-locked loops. The primary requirement imposed on

signal-to-noise ratio is to insure that successful tracking is maintained

for the required tracking period. These typically involve an effective

signal-to-noise ratio of about 16 db, (more specifically, ig to Z0 db).
L

The parameters required for signal-to-noise ratio for a reference

system are taken from the parameters given in Apollo Note No. Z01.

Other results may be obtained from scaling. The reference system

has a 30 db signal-to-noise ratio for 1 second smoothing time.

Some component values which comprise Fef f are modified as a

consequence of a discussion with John Painter (NASA, Houston, Infor-

mation System Engineering Office). System degradation or the tolerance

problem is presently under investigation at NASA, Houston. The re-

.vised numerical results and rationale are indicated. An unfavorable

situation occurs with the Earth radars using uncooled parametric

amplifiers for the low noise receiver (as is contemplated presently for

the radars with 30 feet dish antennas) and the portion of the Moon

within the main lobe of the antenna illuminated by the Sun. The main

lobe of the antenna is always considered as not encompassing any

portion of the Sun. The internal receiver noise and external back-

ground noise is then about 3 db for this situation. Lunar background

noise account for the additional 3 db. Polarization loss treated

separately accounts for a 3 db loss when the omni-directional antenna

system is employed by the spacecraft and a 1 db loss when the space-

craft directional antenna is employed. The 3 db loss is a consequence

c-



of linear polarization for the omni-directional antenna system and

circular polarization for the directional antennas (both spacecraft

and ground-based). The 1 db factor is to account for the different

effective ellipticity for the directional antenna systems. Considering

the spacecraft using an omni antenna and the 30 feet ground-based

radars in the unfavorable noise background condition, a total Fef f

of 17 db can then only allo,w for media loss additional antenna
,\ P

degradation, and other system degradation factor of about 2 db total.

Media losses should be negligible at these frequencies. The actual

Fef f at the input to the phase-locked loop will be 3 db greater than

the value indicated since the processing loss occurs following the

phase-locked loop. W_th this factor in mind, an Fef f of 17 db actually

allows for 5 db instead of Z db additional degradation. Considering

that conservative and quite detailed losses have been assumed, a

5 db safety factor is extremely conservative.

This note specifically deals with the doppler mode of radar

tracking. The omni-directional antenna system is assumed employed

by the spacecraft and the ground-based radars are assumed to use 30 foot

antennas. The signal-to-noise performance can be increased by ZZ db
<

and Z8 db for two feet and four feet spacecraft antennas respectively.

The two situations treated below are for a ground-based transmitter

and a spaceborne transmitter. The carrier tracking loop is considered

as being a second order loop with a damping coefficient of about 0.7.

The ground-based transmitting system is treated first. The

parameters which require scaling with the net change in db are indicated
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Table l°

Net Signal-to-Noise Ratio for Ground-Based Transmitter
t

Reference Signal-to- Noise Ratio

Transmitter Power (10 kw)

Receiver Noise Figure (11 db)

Effective Bandwidth (I kc)

Net Signal-to-Noise Ratio

+ 30 db

+ 33 db

- 8 db

- 30 db

+ 25 db

@ The associated steady-state range (bias) error for a constant
2. -3

acceleration of 10 meters per sec. Is I0 cm. These numbers are

quite evide_ntly satisfactory for this application. The VCO output is

multiplied by a factor 12-0 in frequency for transmission at the desired

S-band frequency, This increases the bias error to . 12 cm while

S
--_ is decreased to + 4 db. The multiplier, to a first order approximately,

simply increases the noise bandwidth to 120 kc with the same spectral

density as before for band-limited white noise. As a consequence, the
S

change in _ is unimportant provided that the ground-based receiver

tracking loop is narrow as compared to the spacecraft tracking loop,

There will be a slight decrease in effective spacecraft transmitter

power for this situation.

Considering now the situation with the spacecraft acting as the

transmitter, the performance will be rotund to deteriorate somewhat

under extreme conditions. John Painter indicated that the nominal

spacecraft transmitter power as 20 watts. He further stated that the

t\
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D
carrier would be suppressed by no more than 7 to 8 db. 8 db suppression

S

of 20 watts would change the net _- by -2 db from the reference system.

A 40 cps ground-based receiver bandwidth would further reduce the
S

signal-to-noise ratio by 16 db yielding a net -_- of + 1Z db which

should be satisfactory. The associated bias error is . 625 cm.

These results have indicated that 30 feet ground-based antenna

systems can be quite satisfactory for Apollo tracking requirements.

Naturally, one would take advantage of improved performance (e. g.,

directional antennas) where it is available rather than operate in a

degraded mode.

One other important factor needs to be considered-- solar noise.

A severe deterioration in --S will occur if_the situation arises where
N

the main _obe of the ground-based receiving system must, fro m geometrical
F

considerations, encompass a substantial portion of the Sun. This is

particularly true for disturbed sun conditions. Directional spacecraft
_j

antennas should be required for this condition.

_f
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